دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Chee-Peng Lim, Ashlesha Vaidya, Kiran Jain, Virag U. Mahorkar, Lakhmi C. Jain سری: Intelligent Systems Reference Library, 211 ISBN (شابک) : 3030791602, 9783030791605 ناشر: Springer International Publishing سال نشر: 2021 تعداد صفحات: 463 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Artificial Intelligence in Healthcare: Vol. 1 - Advances and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای هوش مصنوعی در بهداشت و درمان: جلد. 1 - پیشرفت ها و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This handbook on Artificial Intelligence (AI) in healthcare consists of two volumes. The first volume is dedicated to advances and applications of AI methodologies in specific healthcare problems, while the second volume is concerned with general practicality issues and challenges and future prospects in the healthcare context.
The advent of digital and computing technologies has created a surge in the development of AI methodologies and their penetration to a variety of activities in our daily lives in recent years. Indeed, researchers and practitioners have designed and developed a variety of AI-based systems to help advance health and well-being of humans.
In this first volume, we present a number of latest studies in AI-based tools and techniques from two broad categories, viz., medical signal, image, and video processing as well as healthcare information and data analytics in Part 1 and Part 2, respectively. These selected studies offer readers practical knowledge and understanding pertaining to the recent advances and applications of AI in the healthcare sector.
Preface Contents Part I Advances in AI for Healthcare Signal, Image, and Video Processing 1 Advances in Artificial Intelligence for the Identification of Epileptiform Discharges 1.1 Background 1.2 Artificial Intelligence Tools 1.3 Pre-Ictal, Ictal, Post-Ictal Detection 1.4 Seizure Detection 1.5 Inter-Ictal Identification 1.6 Seizure Onset Zone 1.7 Implications and Future Challenges References 2 Characterizing EEG Electrodes in Directed Functional Brain Networks Using Normalized Transfer Entropy and PageRank 2.1 Introduction 2.2 Current Approaches to Study Directional Information Flow in FBNs 2.2.1 Normalized Transfer Entropy 2.2.2 PageRank 2.3 Materials and Methods 2.3.1 Experimental Design 2.3.2 EEG Data Acquisition and Pre-Processing 2.3.3 Behavioral Data 2.3.4 Directed Information Flow Using Normalized Transfer Entropy 2.3.5 Rate of Change of Cognition 2.4 Experimental Results and Discussion 2.4.1 Electrode Wise Analysis 2.4.2 Observation Phase 2.4.3 Entire Population Group-Wise Analysis 2.5 Conclusion References 3 Autistic Verbal Behavior Language Parameterization 3.1 Introduction 3.2 Considerations About the Autistic Spectrum Disorder 3.2.1 Degrees of Autism 3.2.2 Verbal Behavior 3.3 Materials and Methods 3.3.1 Hardware 3.3.2 Protocol 3.3.3 Software 3.4 Preliminary Evaluation 3.4.1 Modeling the Problem with Metadata 3.4.2 Advantages and Disadvantages of Using the Proposed Approach 3.5 The Sounds of the Use-Case 3.6 Test and Evaluation 3.6.1 Pre-processing 3.6.2 Variable Selection 3.6.3 Automatic Timestamp Detection 3.6.4 Model for Timestamp Detection 3.6.5 Model Findings and Results Analysis 3.7 Conclusions and Future Work References 4 Case Studies to Demonstrate Real-World Applications in Ophthalmic Image Analysis 4.1 Introduction 4.2 Related Work 4.2.1 Retinal Image Quality Assessment 4.2.2 Arteriolar-to-Venular Index and A/V Classification 4.2.3 Retinopathy of Prematurity 4.3 Case Study: Retinal Quality Assessment 4.3.1 Dataset 4.3.2 Methods 4.3.3 Results 4.4 Case Study: Arteriolar-to-Venular Index 4.4.1 Datasets 4.4.2 Methods 4.4.3 Results 4.5 Case Study: Retinopathy of Prematurity 4.5.1 Datasets 4.5.2 Methods 4.5.3 Results 4.6 Summary References 5 Segmentation of Petri Plate Images for Automatic Reporting of Urine Culture Tests 5.1 Introduction 5.2 Related Work 5.3 Automatic Petri Plate Analysis Pipeline 5.3.1 Image Acquisition 5.3.2 Segmentation 5.3.3 Colony Classification and Count 5.4 Conclusions References 6 Repurposing Routine Imaging for Cancer Biomarker Discovery Using Machine Learning 6.1 Introduction 6.1.1 Imaging Modalities in Cancer Care 6.1.2 Imaging in the Cancer Pathway 6.2 Cancer Biomarker Research 6.3 Machine Learning Applications in Cancer Cross-Sectional Imaging 6.3.1 Lesion Detection/Classification 6.3.2 Segmentation 6.3.3 Cancer-Related Radiomics 6.4 Preparing Radiology Data for Machine Learning 6.5 Example of Biomarker Discovery: Sarcopenia in Cancer 6.5.1 Defining Cancer Sarcopenia 6.5.2 Scalable Solutions to Radiological Sarcopenia Assessment 6.5.3 Remaining Translational Gaps 6.6 Conclusion References 7 Automatic Detection of LST-Type Polyp by CNN Using Depth Map 7.1 Introduction 7.2 Background 7.2.1 Removal of Specular Reflectance Components and Generation of Lambertian Images 7.2.2 Recovering 3D Shape and Creating Depth Map 7.3 Construction of U-Net Using Depth Map 7.3.1 Preprocessing and Construction of Dataset 7.3.2 Construction of CNN Model Using U-Net Structure 7.4 Experiment 7.4.1 Evaluation Method 7.4.2 Detection Experiment 7.5 Conclusion References 8 Artificial Intelligence and Deep Learning, Important Tools in Assisting Gastroenterologists 8.1 Introduction 8.2 Computer-Assisted Colonoscopy for CRC Early Detection 8.2.1 Polyps’ Semantic Segmentation 8.2.2 Reviews and Meta-Analysis, Randomized Studies and AI Embedded Colonoscopy Devices 8.2.3 Well Structured Labeled Databases 8.3 Dealing with Video Colonoscopy Frames 8.4 Deep Learning on Video Colonoscopies 8.4.1 Deep Learning on Video Colonoscopies Using Nvidia Jetson Xavier 8.5 Conclusions References 9 Last Advances on Automatic Carotid Artery Analysis in Ultrasound Images: Towards Deep Learning 9.1 Introduction 9.2 Carotid Artery Segmentation and Intima Media Thickness Estimation in Ultrasound Images 9.2.1 Deep Learning Proposal for IMT Estimation and Plaque Detection 9.3 Carotid Artery Plaque Classification and Risk Assessment in 2D CA Ultrasound Images 9.3.1 Data Properties: Transversal/Follow-Up, Different Devices, Image Modality, Artery Territory, Number of Samples and Ground Truth 9.3.2 Work Objectives 9.3.3 Image Features 9.3.4 Methods and Results 9.4 Discussion: Challenges in Deep Learning 9.5 Conclusions and Future Perspective 9.6 Appendix References 10 Radiomics and Its Application in Predicting Microvascular Invasion of Hepatocellular Carcinoma 10.1 Introduction 10.1.1 What is Radiomics 10.1.2 What Has Been Achieved in Medical Image Analysis Using Radiomics 10.1.3 Application of Radiomics in Hepatocellular Carcinoma 10.2 Radiomics Signature and Prediction Model 10.2.1 Medical Image Acquisition 10.2.2 Calibration and Segmentation of Tumour Regions 10.2.3 Feature Extraction and Quantification 10.2.4 Feature Selection 10.2.5 Classification and Prediction 10.2.6 Material and Clinical Model 10.2.7 Radiomics Model and Fusion Model for Predicting MVI 10.3 Experiment 10.3.1 Experimental Result 10.3.2 The Direction of Future Progress 10.4 Conclusion References 11 Artificial Intelligence in Remote Photoplethysmography: Remote Heart Rate Estimation from Video Images 11.1 Introduction 11.2 Naive Methods 11.3 Blind Signal Separation 11.3.1 Independent Component Analysis 11.3.2 Principal Component Analysis 11.3.3 Joint Blind Signal Separation 11.4 Modelling 11.4.1 CHROM 11.4.2 Illumination Rectification 11.4.3 2SR, POS 11.4.4 Motion Reduction 11.5 Deep Learning 11.5.1 Feature Extraction and Representation 11.5.2 Interference Separation and Signal Enhancement 11.6 Popular Datasets for rPPG Learning 11.7 Future References Part II Advances in AI for Healthcare Information and Data Analytics 12 Mining Data to Deal with Epidemics: Case Studies to Demonstrate Real World AI Applications 12.1 Introduction 12.1.1 Goal and Research Questions 12.1.2 Introduction to Data Mining 12.1.3 Data Mining Techniques 12.1.4 Chapter Overview 12.2 Literature Review 12.2.1 Dengue Fever Analysis and Prediction with Classification and Association Rules 12.2.2 Mumps Analysis with Clustering and Association Rules 12.2.3 Cholera Analysis with Classification and Association Rules 12.2.4 Measles Analysis with Classification 12.2.5 Ebola Analysis with Clustering 12.3 Methodology 12.3.1 Methodology Outline 12.4 Experiments 12.4.1 Dataset 12.4.2 Classification 12.4.3 Clustering 12.4.4 Association Rule Mining 12.5 Conclusion 12.5.1 Discussion 12.5.2 Overview of Contribution 12.5.3 Future Directions References 13 A Powerful Holonic and Multi-Agent-Based Front-End for Medical Diagnostics Systems 13.1 Introduction 13.2 State of the Art 13.3 Differential Diagnosis and the Holonic Medical Diagnostics System (HMDS) 13.3.1 Differential Diagnosis as a Holonic Domain 13.3.2 The Holonic Medical Diagnostics System 13.4 Learning in the HMDS 13.5 Simulations 13.5.1 The Assessment of the Diagnosis Abilities 13.5.2 The Assessment of the Self-Organization Abilities 13.6 Discussion 13.7 Conclusion References 14 Computer-Aided Detection of Depressive Severity Using Multimodal Behavioral Data 14.1 Introduction 14.2 Multimodal Behavioral Dataset of Chinese University Students with and Without Depressive Tendencies 14.2.1 Collecting Survey Data 14.2.2 Acquiring Behavioral Data 14.3 Computer-Aided Detection of Depressive Severity 14.3.1 Feature Extraction 14.3.2 Detection Model 14.4 Performance Evaluation 14.4.1 Experimental Setup 14.4.2 Evaluation Functions 14.4.3 Results 14.5 Conclusions References 15 Classifying Process Traces for Stroke Management Quality Assessment: A Deep Learning Approach 15.1 Introduction 15.2 Background 15.2.1 Convolutional Neural Networks 15.2.2 Autoencoders 15.2.3 Recurrent Neural Networks 15.3 Related Work 15.4 Deep Learning Process Trace Classification for Quality Assessment 15.5 Experimental Results 15.6 Discussion and Conclusions References 16 Synergy-Net: Artificial Intelligence at the Service of Oncological Prevention 16.1 Introduction 16.2 Synergy-Net 16.2.1 Medical Imaging and AI 16.2.2 The Synergy-Net Architecture 16.2.3 Synergy-Net: Analysed Tumours 16.3 Skin Cancer 16.4 Lung 16.5 Colon Rectum Cancer 16.6 Breast Cancer 16.7 Gastric Carcinoma 16.8 Thyroid Cancer 16.9 Prostate Cancer 16.10 Conclusions and Future Perspectives References 17 New Insights on Implementing and Evaluating Artificial Intelligence in Cardiovascular Care 17.1 Introduction 17.1.1 Artificial Intelligence and Machine Learning 17.1.2 Relevance of Artificial Intelligence to the Future of Cardiovascular Care Delivery 17.1.3 Implementing AI Within Institutional Healthcare Environments 17.2 Data Capture and Management 17.2.1 Data Availability 17.2.2 Data Quality 17.2.3 Data Generalizability 17.2.4 Missing Data 17.2.5 Data Permission and Privacy 17.3 Model Development and Validation 17.3.1 Model Development 17.3.2 Model Performance Metrics May not Reflect Clinical Applicability 17.3.3 Model Generalizability and Explainability 17.3.4 Algorithmic Bias and Equity, Diversity and Inclusion 17.4 Clinical Integration and Support 17.4.1 Human Barriers 17.4.2 Regulatory Considerations and Demonstrating Patient Value 17.5 Chapter Summary References