دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: R. S. KHANDPUR
سری:
ISBN (شابک) : 9789339221355
ناشر: MC GRAW HILL INDIA
سال نشر: 2015
تعداد صفحات: 794
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook Of Analytical Instruments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای ابزارهای تحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Contents 1. Fundamentals of Analytical Instruments 1.1 Types of Chemical Analysis 1.2 Elements of an Analytical Instrument 1.3 Sensors and Transducers 1.3.1 Classification of Transducers 1.3.2 Performance Characteristics of Transducers 1.3.3 Smart Sensors 1.4 Signal Processing in Analytical Instruments 1.5 Read Out (Display) Systems 1.5.1 Analog Meters 1.5.2 Digital Displays 1.5.3 Laboratory Recorders 1.5.4 Video Display Units 1.6 Intelligent Analytical Instrumentation Systems 1.7 PC-Based Analytical Instruments 1.8 Mems in Analytical Instruments 1.9 Micro-Fluidics in Analytical Instruments 1.10 Methods of Analysis 1.10.1 Types of Instrumental Methods 1.10.2 Classification of Analytical Instruments 1.11 Performance Requirements of Analytical Instruments 1.11.1 Errors in Chemical Analysis 1.11.2 Types of Errors 1.11.3 Accuracy and Precision 1.11.4 Significant Figures 1.11.5 Application of Statistical Methods 1.11.6 Signal-to-Noise Ratio 1.11.7 Other Performance Parameters 1.12 Instrument Calibration Techniques 1.12.1 Calibration Curve Method 1.12.2 Standard Addition Method 1.12.3 Method of Internal Standard 1.13 Validation 2. Colorimetres and Spectrophotometers (Visible – Ultraviolet) 2.1 Absorption Spectroscopy 2.1.1 Electromagnetic Radiation 2.1.2 The Electromagnetic Spectrum 2.1.3 Interaction of Radiation with Matter 2.2 Laws Relating to Absorption of Radiation 2.2.1 Lambert’s Law 2.2.2 Beer’s Law 2.2.3 The Beer-Lambert Law 2.2.4 Deviations from Beer’s Law 2.2.5 Quantitative Analysis 2.2.6 Choice of Wavelength 2.2.7 Simultaneous Spectrophotometric Determination 2.3 Absorption Instruments 2.3.1 Radiation Sources 2.3.2 Optical Filters 2.3.3 Monochromators 2.3.4 Optical Components 2.3.5 Photosensitive Detectors 2.3.6 Slit Width 2.3.7 Sample Holders 2.4 Ultraviolet and Visible Absorption Spectroscopy 2.4.1 Types of Absorption Instruments 2.5 Colorimeters/Photometers 2.5.1 Single-beam Filter Photometers 2.5.2 Double-beam Filter Photometer 2.5.3 Probe Type photometer 2.5.4 Miniature Fibre Optic Spectrometer 2.5.5 Multi-channel Photometer 2.5.6 Pocket Colorimeter 2.5.7 Process Photometers 2.6 Spectrophotometers 2.6.1 Single Beam Spectro-Colorimeters/Spectrophotometers 2.6.2 Double-Beam Spectrophotometers 2.6.3 Microprocessor-Based Spectrophotometers 2.6.4 High Performance Spectrophotometers 2.6.5 Dual Wavelength Spectrophotometer 2.6.6 Scanning Spectrophotometers 2.6.7 The Derivative Technique 2.7 Sources of Error in Spectrophotometric Measurements 2.7.1 Instrument-related Errors 2.7.2 Non Instrumental Errors 2.8 Calibration 3. Infrared Spectrophotometers 3.1 IR Spectroscopy 3.2 Basic Components of IR Spectrophotometers 3.2.1 Radiation Sources 3.2.2 Monochromators 3.2.3 Entrance and Exit Slits 3.2.4 Mirrors 3.2.5 Detectors 3.3 Types of IR Spectrophotometers 3.3.1 Optical Null Method 3.3.2 Ratio Recording Method 3.4 Sample Handling Techniques 3.4.1 Gas Cells 3.4.2 Liquid Cells 3.4.3 Variable Path Length Cells 3.4.4 Sampling of Solids 3.4.5 Micro-sampling 3.5 Fourier Transform Infrared Spectroscopy 3.5.1 FTIR spectrometers 3.5.2 Major Components of FTIR Spectrophotometer 3.5.3 Advantages of FTIR 3.6 Calibration 3.7 Attenuated Total Reflectance Technique 4. Flame Photometers 4.1 Principle of Flame Photometry 4.2 Basic Flame Photometer 4.3 Constructional Details of Flame Photometers 4.3.1 Emission System 4.3.2 Optical System 4.3.3 Photosensitive Detectors 4.3.4 Recording System 4.4 Clinical Flame Photometers 4.5 Accessories For Flame Photometer 4.6 Expression of Concentration 4.7 Interferences in Flame Photometry 4.7.1 Flame Background Emission 4.7.2 Direct Spectral Interference 4.7.3 Self-Absorption 4.7.4 Effect of Anions 4.7.5 Effect of Ionisation 4.7.6 Solution Characteristics 4.8 Procedure For Determinations 4.8.1 Calibration Curve Method 4.8.2 Internal Standard Method 5. Atomic Absorption and Emission Spectrophotometers 5.1 Atomic Spectroscopy 5.2 Atomic Absorption Spectroscopy 5.3 Atomic Absorption Instrumentation 5.3.1 Radiation Sources 5.3.2 Burners and Flames 5.3.3 Graphite Furnace for Atomization 5.3.4 Optical System 5.3.5 Electronic System 5.3.6 Sampling System 5.4 Atomic Emission Spectroscopy 5.5 Atomic Emission Spectrophotometer 5.6 Plasma Excitation Sources 5.6.1 Direct Current Plasma (DCP) 5.6.2 Inductively Coupled Plasma (ICP) 5.6.3 Microwave-Induced Plasma (MIP) 5.7 Performance Aspects 5.8 Sources of Interferences 5.8.1 Anionic Interference 5.8.2 Viscosity Interference 5.8.3 Ionization Interference 5.8.4 Broadening of Spectral Line 6. Fluorimeters and Phosphorimeters 6.1 Photoluminescence Spectroscopy 6.2 Fluorescence Spectroscopy 6.3 Principle of Fluorescence 6.3.1 Relationship Between Concentration and Fluorescence Intensity 6.3.2 Advantages of Fluorescence Technique 6.4 Measurement of Fluorescence 6.4.1 Single-Beam Filter Fluorimeter 6.4.2 Double-Beam Filter Fluorimeter 6.4.3 Ratio Fluorimeters 6.5 Spectrofluorimeters 6.6 Microprocessor-Based Spectrofluorometer 6.6.1 PerkinElmer Fluorescence Spectrometer Model LS-3 6.7 Measurement of Phosphorescence 6.7.1 Phosphorescence Spectrometer 7. Raman Spectrometer 7.1 The Raman Effect 7.2 Raman Spectrometer 7.2.1 The Source 7.2.2 Sample Chamber 7.2.3 The Spectrometer 7.2.4 The Detector 7.2.5 Computer 7.3 PC-Based Raman Spectrometer 7.4 FT Raman Spectrometer 7.5 Infrared and Raman Microspectrometry 8. Photoacoustic and Photothermal Spectrometers 8.1 Photoacoustic Spectroscopy 8.1.1 System Components 8.1.2 Typical Photoacoustic Spectrometers 8.1.3 FTIR Photoacoustic Spectroscopy 8.2 Photothermal Spectroscopy 8.2.1 Excitation Sources 8.2.2 Basic Processes in Photothermal Spectroscopy 8.2.3 Photothermal Instrumentation 9. Mass Spectrometers 9.1 Basic Mass Spectrometer 9.2 Principle of Operation 9.3 Types of Mass Spectrometers 9.3.1 Magnetic Deflection Mass Spectrometer 9.3.2 The Time-of-Flight Mass Spectrometer 9.3.3 Radio Frequency Mass Spectrometer 9.3.4 Quadrupole Mass Spectrometer 9.4 Components of a Mass Spectrometer 9.4.1 The Inlet Sample System 9.4.2 Ion Sources 9.4.3 Electrostatic Accelerating System 9.4.4 Ion Detectors and Recording of Mass Spectrograph 9.4.5 Vacuum System 9.5 Inductively Coupled Plasma Mass Spectrometer 9.6 Trapped Ion Mass Analyzers 9.7 Quadrupole Ion Trap Mass Spectrometer 9.8 Fourier Transform Mass Spectrometry (FT-MS) 9.8.1 Ion Cyclotron Resonance (ICR) Mass Spectrometery 9.8.2 Orbitrap Mass Spectrometry 9.9 Tandem Mass Spectrometry (MS/MS) 9.10 Resolution in Mass Spectrometry 9.11 Applications of Mass Spectrometry 10. Nuclear Magnetic Resonance Spectrometer 10.1 Nuclear Magnetic Resonance Spectroscopy 10.2 Principle of NMR 10.2.1 Nuclear Spin 10.2.2 Nuclear Energy Levels 10.2.3 Resonance Conditions 10.2.4 NMR Absorption Spectra 10.2.5 Relaxation Process 10.2.6 The Chemical Shift 10.3 Types of NMR Spectrometers 10.3.1 Continuous-Wave NMR Spectroscopy 10.3.2 Fourier Transform NMR Spectroscopy 10.4 Constructional Details of NMR Spectrometer 10.4.1 Magnetic Field 10.4.2 The Radio-Frequency Transmitter 10.4.3 The Signal Amplifier and Detector 10.4.4 The Display System 10.4.5 Data Display and Record 10.4.6 The Sample Holder 10.5 Computer Controlled NMR Spectrometer 10.6 Sensitivity Enhancement for Analytical NMR Spectroscopy 10.7 Spin Decoupler 10.8 Fourier Transform NMR Spectroscopy 11. Electron Spin Resonance Spectrometers 11.1 Electron Spin Resonance 11.2 Basic ESR Spectrometer 11.3 Components of an ESR Spectrometer 11.3.1 The Magnet and the Magnetic Field Controller 11.3.2 Microwave Bridge 11.3.3 Modulation Unit 11.3.4 Detection Methods 11.3.5 Recorder 11.3.6 Oscilloscope 11.3.7 Sample Cavities 11.3.8 Sample Cells 12. Electron and Ion Spectroscopy 12.1 Surface Spectroscopic Techniques 12.2 Electron Spectroscopy 12.2.1 Electron Spectroscopy for Chemical Analysis (ESCA) 12.2.2 Auger Electron Spectroscopy (AES) 12.3 Instrumentation for Electron Spectroscopy 12.3.1 Radiation Sources 12.3.2 Energy Analysers 12.3.3 Electron Detectors 12.3.4 Read-Out System 12.3.5 Vacuum Systems 12.3.6 Magnetic Shielding 12.3.7 Sample Handling 12.4 ION Spectroscopy 12.4.1 Instrumentation for Ion Spectroscopy 13. Scanning Electron Microscope 13.1 Background 13.1.1 Optical vs. Electron Microscope 13.2 Scanning Electron Microscope (SEM) 13.3 Types of Signals in SEM 13.4 Components of SEM 13.4.1 Electron Beam Generator 13.4.2 Electron Lenses 13.4.3 Focus and Alignment: 13.4.4 Accelerating Voltage 13.4.5 Detectors 13.4.6 Display 13.4.7 The Vacuum System 13.5 Digital SEM 13.6 Scanning Transmission Electron Microscopy (STEM) 14. Scanning Probe Microscopes 14.1 Scanning Probe Microscopy 14.2 Scanning Tunnelling Microscope (STM) 14.2.1 Principle of STM 14.2.2 Components of STM 14.2.3 Requirements of Various Components 14.2.4 Electronic Circuit 14.2.5 Modes of Operation 14.2.6 Applications of Scanning Tunnelling Microscopy 14.3 Atomic Force Microscope 14.3.1 What Is Atomic Force Microscopy? 14.3.2 Components of AFM 14.3.3 Modes of AFM 14.3.4 Magnification of AFM 14.3.5 Resolution in an AFM 14.3.6 Applications of AFM 15. Radiochemical Instruments 15.1 Fundamentals of Radiochemical Methods 15.1.1 Time Decay of Radioactive Isotopes 15.1.2 Units or Radioactivity 15.1.3 Types and Properties of Particles Emitted in Radioactive Decay 15.1.4 Interaction of Radiations with Matter 15.2 Radiation Detectors 15.2.1 Ionisation Chamber 15.2.2 Geiger-Muller Counter 15.2.3 Proportional Counter 15.3 Pulse Height Analyser 15.4 Scintillation Counter 15.5 Gamma Counters 15.5.1 Semiconductor Detectors 15.6 Liquid Scintillation Counters 15.7 Gamma Spectrometry 15.8 Neutron Activation Analysis Instruments 15.8.1 Neutron Activation Analysis 15.8.2 Principle of Neutron Activation 15.8.3 Neutron Sources 15.8.4 Instrumentation for Neutron Activation Analysis 16. X-Ray Spectrometers 16.1 X-Ray Spectrum 16.2 Instrumentation for X-Ray Spectrometry 16.2.1 X-Ray Generating Equipment 16.2.2 Collimators 16.2.3 Monochromators 16.2.4 X-ray Detectors 16.3 X-Ray Diffractometers 16.3.1 Diffraction and Bragg’s Law 16.4 X-Ray Absorption Meter 16.5 X-Ray Fluorescence Spectrometry 16.5.1 X-Ray Fluorescent Spectrometer 16.5.2 Total Reflection X-Ray Fluorescence Spectrometer 16.6 Electron Probe Micro-Analyser 17. Gas Chromatographs 17.1 Chromatography 17.2 Basic Definitions 17.2.1 Retention Time (tR) 17.2.2 Dead Time (tm) 17.2.3 Adjusted Retention Time (tR’) 17.2.4 Capacity Factor (or Partition Ratio) (k’) 17.2.5 Phase Ratio (b ) 17.2.6 Distribution Constant (KD) 17.2.7 Selectivity (or Separation Factor) (a) 17.2.8 Linear Velocity (u) 17.2.9 Efficiency 17.3 Gas Chromatography 17.4 Basic Parts of a Gas Chromatograph 17.4.1 Carrier Gas Supply or the Mobile Phase 17.4.2 Sample Injection System and the Size of the Sample 17.4.3 Chromatographic Column 17.4.4 Thermal Compartment 17.4.5 Detection Systems 17.4.6 Recording Instruments 17.5 Methods of Measurement of Peak Areas 17.6 Gas Chromatograph-Mass Spectrometer (GC-MS) 17.7 Gas Chromatography–Infrared Spectroscopy 18. Liquid Chromatographs 18.1 Liquid Chromatography 18.2 Types of Liquid Chromatography 18.2.1 Column Chromatography 18.2.2 Thin-Layer Chromatography 18.2.3 Paper-Partition Chromatography 18.3 High Pressure Liquid Chromatograph (HPLC) 18.3.1 High-pressure Pump System 18.3.2 Sample Injection System 18.3.3 The Column 18.3.4 Detection Systems 18.3.5 Programmers and Readouts 18.4 Liquid Chromatograph-Mass Spectrometer (LC/MS) 18.4.1 Ion Sources 19. Automated Chemical Analysis Systems 19.1 Why Automate Chemical Analysis? 19.1.1 Basic Automatic Analysis System 19.1.2 Types of Automatic Analysis Techniques 19.1.3 Benefits of Automation in Chemical Analysis 19.2 Automated Biochemical Analysis System 19.3 Segmented-Flow System 19.3.1 Sampling Unit 19.3.2 The Proportioning Pump 19.3.3 Manifolds 19.3.4 Dialyser 19.3.5 Heating Bath 19.3.6 Measurement Techniques 19.3.7 Signal Processing and Data Handling 19.4 Flow Injection Analysis (FIA) Technique 19.4.1 Propelling Unit 19.4.2 Sample Injection System 19.4.3 Transport System 19.5 Semi-Automated Clinical Chemistry Analysers 19.6 Lab-On-Chip Technology 19.7 Dry Chemistry Clinical Analyser 20. Thermo-Analytical Instruments 20.1 Thermo-Analytical Methods 20.2 Thermogravimetric Analysis (TGA) 20.2.1 Instrumentation 20.3 Differential Thermal Analysis (DTA) 20.3.1 Instrumentation 20.4 Simultaneous Thermogravimetry/ Differential Thermal Analysis (TG/DTA) 20.5 Thermomechanical Analysis (TMA) 20.6 Differential Scanning Calorimetry 20.7 Simultaneous Thermal Analysis/Mass Spectrometer 21. Electrophoresis Apparatus and Densitometers 21.1 Electrophoresis 21.2 Slab Electrophoresis Apparatus 21.2.1 Electrophoresis Cabinet 21.2.2 Regulated Power Supply 21.3 Densitometers 21.3.1 Spectrodensitometers 21.3.2 Microprocessor-based Densitometer 21.4 Capillary Electrophoresis 21.4.1 Capillary Electrophoresis Instrumentation 21.5 Parallel Capillary Electrophoresis for DNA Sequencing 21.6 Micro-Electrophoresis 22. Electrochemical Instruments 22.1 Electrochemical Methods for Analysis 22.2 Electrochemical Cell 22.2.1 Types of Electrodes 22.3 Potentiostats 22.4 Types of Electrochemical Methods 22.5 Potentiometers 22.6 Conductivity Meters 22.6.1 Measurement of Conductance 22.6.2 Conductivity Cells 22.6.3 Temperature Compensation in Conductivity Measurements 22.6.4 Conductivity Measurements Using High Frequency Methods 22.7 Voltammetry 22.8 Polarographs 22.8.1 Basic Polarographic Instrument 22.8.2 Dropping Mercury Electrode 22.8.3 Reference Electrode 22.8.4 Typical Polarographs 22.9 Coulometers 22.10 Amperometers 22.11 Aquameters 22.12 General Purpose Electrochemical Instrumentation 23. pH Meters and Ion Analysers 23.1 What is pH? 23.2 Principle of pH Measurement 23.3 Electrodes for pH Measurement 23.3.1 The Hydrogen Electrode 23.3.2 Glass Electrode 23.3.3 Calomel Electrode or Reference Electrode 23.3.4 Silver/Silver Chloride Reference Electrode 23.3.5 Combination Electrode 23.3.6 The Asymmetry Potential 23.3.7 Buffer Solutions 23.3.8 Calibration 23.4 pH Meters 23.4.1 Design considerations for pH Meters 23.4.2 Digital pH Meters 23.4.3 pH Sensing Integrated Analog Front End 23.4.4 Industrial pH Meters 23.4.5 Failures in pH Meters 23.5 Selective-ION Electrodes 23.5.1 Advantages of Ion-Selective Electrode 23.5.2 Problems with ISE Measurements 23.5.3 Ammonia Electrode 23.5.4 Fluoride Electrode 23.5.5 Care and Maintenance of ISEs 23.5.6 Difference Between pH and Other Ion-Selective Electrodes 23.6 ION Analyzer 23.6.1 PC-based pH Meter Ion Analysers 23.7 Chemically Sensitive Semiconductor Devices 23.8 Biosensors 23.9 Point-of-Care Instruments 23.9.1 Point-of-Care Testing (POCT) 23.9.2 Blood Glucose Monitor 24. Blood Gas Analysers 24.1 Acid-Base Balance 24.2 Blood pH Measurement 24.2.1 Electrodes for Blood pH Measurement 24.2.2 Effect of Blood on Electrodes 24.2.3 Buffer Solutions 24.3 Measurement of Blood pCO2 24.3.1 Performance Requirements of pH Meters Used for pCO2 Measurement 24.4 Blood pO2 Measurement 24.5 A Complete Blood Gas Analyser 24.5.1 Fibre Optic-based Blood Gas Sensors 25. Industrial Gas Analysers and Process Instrumentation 25.1 Types of Gas Analysers 25.2 Paramagnetic Oxygen Analyser 25.3 Magnetic Wind Instruments 25.4 The Electrochemical Methods 25.4.1 Galvanic Methods 25.4.2 Polarographic Cells 25.4.3 Conductometric Method 25.5 Infrared Gas Analysers 25.6 Thermal Conductivity Analysers 25.7 Analysers Based on Gas Density 25.8 Method Based on Ionisation of Gases 25.9 Process Analysers 25.9.1 Process Photometers 25.9.2 CHN/O/S Analyser 25.9.3 Element Analyser Based on Tuneable Diode Laser Spectroscopy (TDLS) 25.10 Laboratory Robots for Process Industry 26. Particle Size Analysers 26.1 Particles and Their Characteristics 26.1.1 Which Particle Properties Are Important to Measure? 26.1.2 How Do We Define Particle Size? 26.1.3 Distribution Statistics 26.2 Particle Size Measurements 26.2.1 Imaging vs. Non-imaging Techniques 26.2.2 Laser Diffraction Particle Sizing 26.2.3 Dynamic Light Scattering (DLS) 26.2.4 Electrophoretic Light Scattering (ELS) 26.2.5 Acoustic Spectroscopy for Particle Sizing 26.2.6 Automated Imaging 26.3 Particle Counters 26.3.1 Coulter Principle Method 26.3.2 Blood Cell Counters 26.3.3 Errors in Electronic Counters 26.4 Portable Coulter Counters 26.4.1 Handheld Automated Cell Counter and Analyser 26.4.2 Blood Cell Counter for Point-of-Care Testing (POCT) 27. Environmental Pollution Monitoring Instruments 27.1 Air Pollution Monitoring Instruments 27.1.1 Representation of Concentration of Gases 27.1.2 Types and Concentration of Various Gas Pollutants 27.1.3 Instrumental Techniques and Measurement Range 27.2 Air Pollution Monitoring Stations 27.3 Carbon Monoxide 27.3.1 Non-dispersive Infrared Analyser 27.4 Sulphur Dioxide 27.4.1 Conductivitimetry 27.4.2 Ultraviolet Fluorescence Method 27.5 Nitrogen Oxides 27.5.1 Chemiluminescence 27.5.2 Use of CO Laser 27.5.3 Laser Opto-acoustic Spectroscopy 27.5.4 UV-based NO Analyser 27.5.5 Combined SO2 and NO Analyser 27.6 Hydrocarbons 27.6.1 Flame Ionization Detector (FID) 27.7 Ozone 27.7.1 Chemiluminescence 27.7.2 Conductivitimetry 27.8 Automated Wet-Chemical Air Analysis 27.9 Measuring Methods for Particulate Matter 27.9.1 Gravimetric Method 27.9.2 Beta Attenuation Monitoring (BAM) 27.10 Remote Monitoring 27.10.1 LIDAR 27.11 Water Pollution Monitoring Instruments 27.11.1 Types of Pollutants and Techniques 27.11.2 Conductivity 27.11.3 Dissolved Oxygen 27.11.4 pH Measurement 27.11.5 Oxidation-reduction Potential (ORP) 27.11.6 Temperature 27.11.7 Turbidity 27.12 In Situ Measurements 27.13 Oil in Water Applications 28. Computer-Based Analytical Instruments 28.1 Computers in Analytical Laboratories 28.2 Digital Computer 28.2.1 Input-Output Systems 28.2.2 Storage Memory Systems 28.2.3 Offline/Online Computers 28.2.4 Dedicated Computers 28.3 Types of Computers 28.4 Modems 28.5 Computer Software 28.5.1 System Software 28.5.2 Application Software 28.5.3 Software Creation 28.5.4 Popular Software Packages 28.6 Interconnecting Laboratory Instruments to Computers 28.6.1 Types of Interfaces 28.6.2 Analog Interfaces 28.6.3 Digital I/O Interfaces 28.6.4 Serial Interface 28.7 Computer Networks 28.7.1 Local Area Network 28.7.2 LAN Communication Using TCP/IP 28.7.3 Wide Area Network (WAN) 28.8 Laboratory Information Management System (LIMS) 28.9 Smart Laboratory 29. Electronic Devices and Circuits 29.1 Electronic Components 29.1.1 Active vs. Passive Components 29.1.2 Discrete vs. Integrated Circuits 29.2 Passive Components 29.3 Semiconductor Devices 29.3.1 P-N Junction 29.3.2 Semiconductor Diode 29.4 Transistors 29.4.1 Bipolar Transistors 29.4.2 Field-Effect Transistor (FET) 29.4.3 MOSFET 29.5 Integrated Circuits 29.6 Operational Amplifiers (OP-AMPS) 29.6.1 Symbolic Representation 29.6.2 Power Supply Requirements for Op-Amps 29.6.3 Output Voltage Swing 29.6.4 Output Current 29.6.5 Characteristics of Op-Amps 29.6.6 Performance Characteristics of Op-Amps 29.6.7 Typical Op-Amp Circuits 29.7 Sources of Noise in Electronic Circuits 29.7.1 Thermal Noise or Johnson Noise 29.7.2 Shot Noise 29.7.3 Flicker Noise 29.7.4 Environmental Noise 29.8 Sources of Noise in Low-Level Measurements 29.8.1 Electrostatic and Electromagnetic Coupling to AC Signals 29.8.2 Proper Grounding (Common Impedance Coupling) 29.9 Noise Reduction Techniques 29.9.1 Hardware Techniques 29.9.2 Software Techniques 29.10 Power Supplies 29.10.1 Types of Regulators 29.10.2 IC Regulators 29.10.3 Three-pin Voltage Regulators 29.10.4 Switched Mode Power Supplies (SMPS) 29.11 High Voltage DC Power Supplies 30. Digital Circuits 30.1 Digital Circuits 30.1.1 Binary Number System 30.1.2 Truth Tables 30.1.3 Logic Circuits 30.1.4 Logic Convention 30.2 Types of Logic Circuits 30.2.1 The AND Gate 30.2.2 The OR Gate 30.2.3 The INVERTER (NOT) Gate 30.2.4 The NAND (NOT-AND) Gate 30.2.5 The NOR Gate 30.2.6 The EXCLUSIVE-OR (EX-OR) Gate 30.2.7 The INHIBIT Gate 30.3 Logic Families 30.3.1 Transistor-Transistor Logic (TTL) 30.3.2 Emitter-Coupled Logic (ECL) 30.3.3 CMOS Logic Families 30.3.4 Characteristics of Integrated Circuit Logic Gates 30.4 Categories of IC’s Based on Packing Density 30.5 Typical Digital Integrated Circuits 30.5.1 Flip-Flops 30.5.2 Counters 30.5.3 Registers 30.5.4 Multiplexer 30.5.5 Demultiplexer 30.5.6 Encoders 30.5.7 Decoders 30.5.8 Tristate Logic 30.6 Semiconductor Memories 30.6.1 Random Access Memory 30.6.2 Read-Only Memory (ROM) 30.7 Microprocessor 30.8 Micro-Controllers 30.9 Embedded Systems 30.10 Data Converters 30.10.1 A/D Converters 30.10.2 Key Parameters in A/D Converters and Their Selection 30.10.3 D/A Converters 30.11 Digital Signal Processing 30.12 Data Acquisition Systems for Analytical Instruments References Index