دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری سوخت ویرایش: نویسندگان: Mostafa El-Sheekh. Abd El-Fatah Abomohra سری: ISBN (شابک) : 0128237643, 9780128237649 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 700 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای سوخت های زیستی جلبکی: جنبه های کشت، تبدیل و پالایش زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Handbook of Algal Biofuels Copyright Page Contents List of contributors About the editors 1 Cyanoprokaryotes and algae: classification and habitats 1.1 Introduction 1.2 Key taxonomic characteristics of cyanoprokaryotes and algae 1.3 Cyanoprokaryotes: taxonomic classification history, modern age, and perspectives 1.3.1 History of cyanobacterial taxonomy 1.3.2 The modern age of cyanobacterial taxonomy 1.3.3 Development of the polyphasic approach 1.3.4 The modern classification of cyanobacteria 1.3.5 Present status and the future of cyanobacterial taxonomy 1.4 History and present-day algal taxonomy 1.5 Global distribution and habitats of cyanoprokaryotes and algae 1.5.1 Aerial (subaerial or aerophytic) algae 1.5.2 Terrestrial algae 1.5.3 Aquatic algae 1.5.4 Symbiotic algae 1.5.5 Parasitic algae 1.5.6 Algae living in extreme environments 1.6 Conclusions and perspectives References 2 Global seaweeds diversity 2.1 Introduction 2.2 Basis of seaweeds classification 2.3 The diverse groups of seaweeds 2.4 Seaweeds composition based on classification 2.4.1 Cell wall 2.4.2 Pigments 2.4.3 Carbohydrates 2.4.3.1 Ulvan 2.4.3.2 Laminarin 2.4.3.3 Fucans 2.4.3.4 Alginates 2.4.3.5 Agar 2.4.3.6 Carrageenan 2.4.4 Lipids 2.5 Global distribution of seaweeds 2.5.1 Temperature 2.5.2 Barriers 2.5.3 Seaweeds production 2.6 Symbiotic relation of seaweeds with other marine organisms 2.7 Conclusion References 3 Biochemical compounds of algae: sustainable energy sources for biofuel production 3.1 Introduction 3.2 Lipids and fatty acids in algae 3.2.1 Lipid groups in algal cells 3.2.2 Triacylglycerol synthesis 3.2.3 Factors affecting triacylglycerol synthesis 3.2.3.1 Nutrients and trace metals 3.2.3.2 Carbon sources 3.2.3.3 Temperature 3.2.3.4 Light intensity and sources 3.2.3.5 Salinity 3.2.3.6 pH 3.2.3.7 Low-dose rate of ionizing radiation 3.2.3.8 Low-dose cold atmospheric pressure plasma 3.3 Carbohydrates 3.3.1 Carbohydrates in algae 3.3.2 Carbohydrates synthesis in algae 3.3.3 Factors affecting carbohydrate synthesis 3.3.3.1 Nutrients and trace metals 3.3.3.2 Carbon sources 3.3.3.3 Temperature 3.3.3.4 Light sources and light intensity 3.3.3.5 Salinity 3.3.3.6 pH 3.3.3.7 Low-dose gamma radiation 3.4 Proteins 3.5 Conclusion References 4 Algal physiology and cultivation 4.1 Introduction 4.2 Photosynthetic efficiency of algae 4.3 Factors influencing growth and biochemical composition 4.4 Microalgae cultivation system 4.5 Artificial growth of seaweeds 4.6 Cost analysis of algae cultivation 4.7 Integrated cultivation system 4.8 Conclusion Acknowledgments References 5 Genetic manipulation of microalgae for enhanced biotechnological applications 5.1 Introduction 5.2 Genetic modification of algae for the generation of energy and value-added metabolites 5.2.1 Enhancement of bioenergy products 5.2.2 Enhancement of carbohydrate accumulation in microalgae 5.2.3 Other value-added compound production 5.3 Advance methods used in genome editing 5.3.1 RNA interference 5.3.2 Zinc-finger nucleases for targeted genome editing 5.3.3 CRISPR/Cas9 5.3.4 Transcription activator-like effector nucleases 5.4 Future perspectives of genetic engineering in microalgae 5.5 Concluding remarks Acknowledgments References 6 The current status of various algal industries 6.1 Introduction 6.2 The algae industry 6.2.1 Commercial production 6.3 Main chemical compounds and bioactive compounds in algae 6.4 Energy production 6.4.1 Biofuels 6.4.1.1 Bioethanol production 6.4.1.2 Biodiesel 6.4.1.3 Biomethane Production 6.4.2 Biobutanol production 6.4.3 Bio-oil 6.4.4 Biohydrogen 6.4.5 Advantage of the algal biomass for biodiesel and bioethanol production 6.4.6 Challenges facing algae biomass for biofuel production 6.5 Algae-based nonenergy field 6.5.1 Pharmaceuticals 6.5.2 Medicinal uses of algae drugs 6.5.3 Antiviral activity of algal compounds 6.5.4 Algae as a source of antioxidant properties 6.5.5 Anticancer activity of algal substances 6.5.6 Pigments and carotenoids 6.6 Cosmetics 6.6.1 Sunscreen 6.6.2 Whitening 6.6.3 Hair care 6.7 Food ingredients and polymers 6.7.1 Alginate 6.7.2 Carragenans 6.7.3 Agar 6.7.4 Aquaculture feed 6.8 Algae industrial companies 6.9 Wastewater treatment by marine algae 6.9.1 Removal of heavy metals and dyes 6.9.2 Removal of nutrients 6.9.3 Algae as a monitor of water quality 6.10 Conclusion References 7 Algal biomass as a promising tool for CO2 sequestration and wastewater bioremediation: an integration of green technology... 7.1 Introduction 7.2 Strategies of carbon dioxide sequestration 7.2.1 Nonbiological methods 7.2.2 Biological sequestration 7.2.3 Phytosequestration 7.3 Carbon dioxide biosequestration using microalgae 7.4 Bioremediation: an ecofriendly approach for wastewater treatment 7.5 Algae-based wastewater treatment plants 7.5.1 Algae-based municipal wastewater treatment process 7.5.1.1 Waste stabilization pond systems 7.5.1.2 High rate algal pond systems 7.5.2 Effluent from industrial wastewater treatment plants and microalgae 7.6 Algal bacterial symbiosis system for wastewater treatment: role and effect of carbon dioxide 7.6.1 Microalgae–bacteria symbiosis mechanism 7.6.2 Impact of Microalgae–bacteria system on the production of algal biomass and associated compounds 7.6.3 Microalgal–bacteria relation and production of biofuel 7.6.3.1 Biodiesel 7.6.3.2 Biohydrogen 7.6.3.3 Biogas and bioethanol 7.7 Biosorption and bioaccumulation 7.7.1 Biosorption 7.7.2 Bioaccumulation 7.7.2.1 Metal bioaccumulation induction to lipid production 7.7.2.2 Biocoagulation 7.7.2.3 Biodegradation/bioconversion 7.8 Conclusion References 8 Application of halophilic algae for water desalination 8.1 Introduction 8.2 Marine environment 8.3 Isolation of halophilic microalgae 8.4 Efficiency of microalgae and seaweeds for water desalination 8.5 Economic feasibility 8.6 Role of algal biofuel in desalination process 8.7 Conclusion References 9 Biofuel versus fossil fuel 9.1 Introduction 9.2 Mechanisms of fossil fuel and biofuel production 9.3 Algal biomass 9.4 Algal biodiesel and other types of physicochemical properties 9.5 Combustion and emission parameters 9.6 Conclusions Acknowledgments References 10 Algae for biodiesel production 10.1 Introduction 10.2 Lipids in algal biomass 10.2.1 Lipids biosynthesis in algal biomass 10.2.2 Lipid content and fatty acid profiles of algal biomass 10.2.3 Effect of environmental conditions on algal lipids 10.2.3.1 Nutrients effect (nitrogen, phosphorus, carbon, and micronutrients) 10.2.3.2 Other environmental conditions (salinity, light, pH, and temperature) 10.3 Different methods of transesterification 10.4 Biodiesel characteristics 10.4.1 Boiling point, flash point, and calorific value 10.4.2 Cetane number, acid number, iodine number, and sulfur content 10.4.3 Cloud point, cold filter plugging point, and pour point 10.4.4 Kinematic viscosity and density 10.4.5 Oxidation stability 10.4.6 Water and sediment content 10.5 Economic feasibility 10.6 Conclusions and perspectives References 11 Eco-friendly biogas production from algal biomass 11.1 Introduction 11.2 Structural and chemical composition of seaweeds 11.2.1 Moisture and salt content 11.2.2 Structure composition 11.2.3 Polysaccharides 11.2.4 Chemical composition variability 11.3 Anaerobic digestion 11.3.1 Microbiology of anaerobic digestion 11.3.1.1 Hydrolysis 11.3.1.2 Acidogenesis 11.3.1.3 Acetogenesis 11.3.1.4 Methanogenesis 11.3.2 Anaerobic digestion of seaweed 11.3.3 Optimization of anaerobic digestion 11.3.4 Anaerobic digestion process parameters 11.3.4.1 Temperature and digester configuration 11.3.4.2 Codigestion 11.4 Pretreatments 11.4.1 Physical treatment 11.4.1.1 Mechanical treatment 11.4.1.2 Size reduction 11.4.1.3 Thermal treatment 11.4.1.4 Microwave pretreatment 11.4.1.5 Ultrasonic treatment 11.4.1.6 Electrokinetic disintegration 11.4.1.7 Extrusion 11.4.2 Chemical treatment 11.4.2.1 Alkali or acidic treatment 11.4.2.2 Peroxide treatment 11.4.2.3 Oxidative 11.4.2.4 Ozonation 11.4.3 Biological pretreatment 11.4.4 Nanoparticles treatment 11.4.5 Inhibitor removal 11.5 The challenges of biogas production from algae 11.6 Conclusion References 12 Algal biomass for bioethanol and biobutanol production 12.1 Introduction 12.2 Current biofuels status 12.3 Bioalcohols 12.3.1 Bioethanol 12.3.2 Biobutanol 12.4 Microalgae 12.5 Biofuel production processes 12.5.1 Biomass production 12.5.1.1 The open pond production unit 12.5.1.2 Closed photobioreactor production unit 12.5.1.3 Hybrid two-stage production unit 12.5.1.4 Heterotrophic biomass production 12.5.1.5 Mixotrophic biomass production 12.5.2 Biomass recovery/harvesting microalgal biomass 12.5.2.1 Bulk harvesting 12.5.2.2 Filtration 12.5.2.3 Flocculation 12.5.2.4 Flotation 12.5.3 The dewatering process and biomass extraction 12.5.4 Bioalcohols conversion 12.6 Bioethanol from microalgae 12.7 Biobutanol from microalgae 12.8 Macroalgae 12.9 Aquaculture seaweed cultivation 12.9.1 Land-based cultivation systems 12.9.1.1 Tanks 12.9.1.2 Ponds 12.9.1.3 Seaweed cultivation in the sea 12.9.1.4 Species-specific cultivation methods employed 12.10 Bioethanol from macroalgae 12.11 Biobutanol from macroalgae 12.12 Conclusion References 13 Thermochemical conversion of algal biomass 13.1 Introduction 13.2 Thermochemical conversion 13.3 Pyrolysis 13.4 Hydrothermal liquefaction 13.5 Gasification 13.6 Torrefaction 13.7 Direct combustion 13.8 Economic feasibility 13.9 Conclusion Acknowledgment References 14 Direct biohydrogen production from algae 14.1 Introduction 14.1.1 Hydrogen production and applications 14.1.2 Hydrogen as new vehicle energy source 14.1.3 Development of hydrogen-dependent energy storage systems 14.2 Biohydrogen as efficient future fuels 14.2.1 Benefits of biohydrogen and future prospects 14.3 Direct cellular biohydrogen production 14.3.1 The photosynthetic electron transport chain in the natural system 14.3.2 Photosystem II 14.3.3 Photosystem I 14.3.4 Hydrogenases 14.3.4.1 NiFe-hydrogenases 14.3.4.2 FeFe-hydrogenases 14.3.4.3 Fe-hydrogenases 14.3.4.4 Improving hydrogenases activity 14.4 Photosynthetic hydrogen production—cyanobacteria 14.5 Enhancing hydrogen production in microalgae by gene technology 14.5.1 Overcoming O2 sensitivity of hydrogenase 14.5.1.1 Partial photosystem II inactivation 14.5.1.2 Increased O2 consumption/sequestration 14.5.2 Elimination of competing pathways 14.6 Biosystem and semiartificial system for photocurrent and biohydrogen productions 14.6.1 Hydrogenase-ferredoxin fusion 14.6.2 Complex of photosystem I and NiFe-hydrogenases via PsaE 14.6.3 Wiring photosystem I through nanoconstruction 14.6.4 Photosystem I-hydrogenase complex via nanowire from phylloquinone 14.6.5 Fabrication of PsaD-hoxYH complex 14.7 Conclusion References 15 Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation 15.1 Introduction 15.2 Biomass jet fuel conversion pathways 15.2.1 Alcohol-to-jet conversion pathways 15.2.1.1 Process description 15.2.1.2 Economic perspective 15.2.1.3 Assessment of life cycle 15.2.2 Oil-to-jet conversion pathways 15.2.2.1 Hydrogenated esters and fatty acids 15.2.2.2 Process of catalytic hydrothermolysis 15.2.2.3 Hydrotreated depolymerized cellulosic jet 15.2.2.4 Economic perspective 15.2.2.5 Assessment of life cycle 15.2.3 Process of gas-to-jet fuel 15.2.3.1 Process illustration 15.2.3.1.1 Process of Fisher Tropsch biomass to liquid 15.2.3.1.2 Process of gas fermentation 15.2.3.2 Economic perspective 15.2.3.3 Assessment of life cycle 15.2.4 Process of sugar to jet fuel 15.2.4.1 Sugar to jet processes 15.2.4.1.1 Process of sugars to hydrocarbons catalytic upgrading 15.2.4.1.2 Direct sugar to hydrocarbons 15.2.4.2 Economic prospects 15.2.4.3 Assessment of life cycle 15.3 Algae biojet fuel 15.4 Biojet fuel performance characteristics 15.4.1 Stability of thermal oxidation 15.4.1.1 Thermal stability 15.4.1.2 Oxidation stability 15.4.2 Combustion characteristics 15.4.2.1 Smoke point 15.4.2.2 Particulate matter emissions 15.4.2.3 Gaseous emissions 15.4.2.4 Derived cetane number 15.5 Fuel compatibility with current fueling system of aircraft 15.5.1 Volume-swells of seal material 15.5.2 Lubricity 15.5.3 Low-temperature-fluidity 15.5.3.1 Freezing point 15.5.3.2 Kinematic viscosity at −20°C 15.5.3.3 Fuel volatility 15.5.3.4 Flash point 15.5.4 Distillation property 15.5.5 Fuel-metering and aircraft-range 15.5.6 Fuel density 15.6 Process simulation 15.7 Conclusions References 16 Photosynthetic microalgal microbial fuel cells and its future upscaling aspects 16.1 Introduction 16.2 What are photosynthetic microalgal microbial fuel cell 16.3 Effect of light on the performance of photosynthetic microalgal microbial fuel cells 16.3.1 Light-emitting diodes and photosynthetic microalgal microbial fuel cells 16.4 DNA sequencing of microbial genomes 16.5 Integrated approaches of photosynthetic microalgal microbial fuel cells 16.5.1 Bioelectricity production 16.5.2 Recycling wastewater 16.5.3 Production of value-added chemicals 16.6 Future of photosynthetic microalgal microbial fuel cells using diatoms 16.7 Conclusions Acknowledgments Conflict of Interest References 17 Sequential algal biofuel production through whole biomass conversion 17.1 Introduction 17.2 Different processes of algal biofuel production 17.2.1 Biohydrogen 17.2.2 Biomethane 17.2.3 Biodiesel 17.2.4 Bioethanol/biobutanol (bioalcohols) 17.2.5 Algal fuel cells 17.3 Recent trends in sequential algal biofuel production 17.4 Conclusion References 18 By-products recycling of algal biofuel toward bioeconomy 18.1 Introduction 18.2 Applications of algae by-products 18.3 Microalgal by-products of biomasses conversion processes 18.4 By-products from ethanol production 18.5 Glycerol by-products of biodiesel productions 18.6 By-products from bio-oil fuel production 18.7 Microalgal-based protein by-products 18.8 Environmental impact of biodiesel and by-products 18.9 Economic feasibility of microalgae biodiesel 18.10 Future research focus and perspectives 18.11 Conclusion References 19 Harnessing solar radiation for potential algal biomass production 19.1 Introduction 19.2 Solar cells 19.2.1 First-generation solar cell 19.2.2 Second-generation (thin film) solar cells 19.2.3 Third-generation solar cells 19.2.4 Fourth-generation solar cells 19.3 Solar panel 19.4 Different applications of solar radiation 19.4.1 Agrophotovoltaic 19.4.2 Aquavoltaic 19.4.3 Solar tractors 19.4.4 Solar photovoltaic (PV) systems 19.4.5 Solar water pumping 19.4.6 Solar dryers 19.4.7 Solar distillation 19.4.8 Biomass to electricity conversion using solar radiation 19.4.9 Solar cooker 19.4.10 Solar water heater 19.5 Conversion of solar radiation to algal biomass 19.5.1 The mechanism of light absorption in algae 19.5.2 Strategic management of harnessing solar radiation for algal cultivation 19.5.3 Constraints effecting the growth of algae 19.6 Solar tracking system 19.6.1 Classification of solar trackers 19.6.1.1 Classification based on their control 19.6.1.2 Classification based on driving systems 19.6.1.3 Classification based on degree of freedom 19.6.2 Classification based on tracking strategy 19.6.3 Efficacy of solar tracker in harnessing solar energy for algal cultivation 19.6.4 Different modes of operation of a solar tracker coupled with photobioreactor 19.7 Solar to heat for thermochemical conversion of algal biomass 19.7.1 Classification of thermochemical processes 19.8 Technoeconomic considerations for different routes of conversion of algae 19.8.1 Study based on four different scenarios 19.8.2 Study based on 3 different biorefinery routes 19.9 Conclusion Acknowledgment Conflict of interest References Further reading 20 Physical stress for enhanced biofuel production from microalgae 20.1 Introduction 20.2 Nutrient stress 20.3 Physical stress 20.3.1 Temperature 20.3.2 Carbon dioxide 20.3.3 pH 20.3.4 Light 20.3.5 Radiation 20.3.5.1 Ultraviolet radiation 20.3.5.2 Gamma radiation 20.3.5.3 Ion beam radiation 20.3.6 Magnetic field 20.3.7 Atmospheric room temperature plasma 20.4 Challenges and future directions of physical stress 20.5 Conclusion References 21 Microalgal–bacterial consortia for biomass production and wastewater treatment 21.1 Introduction 21.2 Interchange of substrates, intercellular communication, and horizontal gene transfer in microalgal–bacterial consortia 21.3 Distribution and role of microalgal–bacterial consortia in the wastewater treatment 21.3.1 Role of microalgal–bacterial consortia in mitigation of carbon and nutrients 21.3.2 Heavy metal removal and sequestering of hazardous waste by microalgal–bacterial consortia 21.4 Biofuel and bioproducts generation by microalgal–bacterial consortia 21.5 Reduction in CO2 emission and electricity generation 21.5.1 Implementation of genomic approaches for wastewater treatment 21.6 Role of lipase in wastewater treatment 21.6.1 Microbial lipase-mediated biocatalysis 21.6.2 Potential microbial strains used for the processing of complex oil and lipid 21.6.3 Analysis of the cumulative effect of enzymatic prehydrolysis on anaerobic digestion of various industrial wastewaters 21.6.4 Role of lipase enzymes in activated sludge systems 21.6.5 Immobilized enzyme and whole-cell biocatalysts in lipid bioremediation 21.6.6 Conversion of lipid contaminated wastewater into value-added products 21.7 Conclusions Acknowledgments References 22 Process intensification for sustainable algal fuels production 22.1 Introduction 22.1.1 Principles and domains of process intensification 22.1.2 Algal to biofuels pathways 22.2 Intensification of photobioreactors 22.2.1 Light saturation and light dilution 22.2.1.1 Solar tracking systems 22.2.1.2 Spectral filtration and shifting 22.2.2 Light attenuation and light path length reduction 22.2.2.1 Thin layer reactors 22.2.2.2 Biofilm reactors 22.2.2.3 Light guides 22.2.3 Carbon dioxide distribution 22.2.3.1 Microbubbling and membrane diffusers 22.2.3.2 High alkalinity 22.3 Harvesting 22.3.1 Membrane filtration 22.3.2 Flotation 22.4 Biomass conversion to biofuel 22.4.1 Cell disruption 22.4.1.1 Pulse electric field 22.4.1.2 Simultaneous cell disruption and lipid extraction 22.4.2 Intensification of drying and oil extraction 22.4.3 Biodiesel production 22.4.4 Wet processing via hydrothermal liquefaction 22.5 Conclusion References 23 Life cycle assessment for microalgae-derived biofuels 23.1 Introduction 23.2 Pros and cons of algal biofuel production 23.3 Life cycle assessment approach 23.3.1 Phases of the life cycle assessment 23.3.1.1 Goal determination and scope definition 23.3.1.2 Inventory analysis 23.3.1.3 Impact assessment 23.3.1.4 Interpretation 23.3.1.5 Reporting 23.3.2 Life cycle assessment approach for algal-derived biofuel 23.3.2.1 Assessment of biofuel raw materials 23.3.2.2 Synthesis of oil/lipid yield of microalgae 23.3.2.3 Assessment of species used for biofuel production 23.3.2.4 Assessment of cultivation systems and reactor types 23.3.2.5 Assessment of harvesting and extraction processes and lipid quantification 23.3.2.6 Assessment of algal residuals processing (coproducts/byproducts) 23.4 Benefits on application of life cycle assessment for microalgal biofuel commercial production 23.5 Current scenario on production and application of biofuels 23.6 Future prospective 23.7 Conclusions Acknowledgment References 24 An overview of the algal biofuel technology: key challenges and future directions 24.1 Introduction 24.2 Challenges 24.2.1 Cultivation 24.2.1.1 Macroalgae cultivation 24.2.1.2 Microalgal cultivation 24.2.2 Harvesting 24.2.2.1 Macroalgae harvesting 24.2.2.2 Microalgae harvesting 24.2.2.2.1 Conventional harvesting methods Centrifugation Flotation Filtration Flocculation 24.2.2.2.2 Advanced harvesting method Magnetic nanoparticles Polymeric nanomaterials Hybrid nanoparticles 24.3 Lipid extraction 24.3.1 Biofuel production 24.3.2 Economic studies 24.4 Future perspectives 24.5 Conclusions Acknowledgment References 25 History and recent advances of algal biofuel commercialization 25.1 Introduction and history of biofuel production 25.2 Recent advancement in large-scale biofuel production 25.3 Pilot-scale and large-scale trials of algal biofuel production 25.4 Top companies of biofuel production from different feedstocks 25.4.1 Eni Gela biorefinery in Europe 25.4.2 Australian Renewable Fuels Limited 25.4.3 Blue fire renewables 25.4.4 Cosan Limited 25.5 Top companies of algal products commercialization 25.5.1 Earthrise Nutritionals 25.5.2 Yunnan Green A Biological Project Co. Ltd 25.5.3 Inner Mongolia Rejuve Biotech Co. Ltd 25.5.4 Fuqing King Dnarmsa Spirulina Co. Ltd 25.5.5 Far East Microalgae Industries Co. Ltd 25.5.6 Cyanotech Corporation 25.6 Top companies of biofuel production from algae 25.6.1 Sapphire Energy Limited 25.6.2 Solix Biofuels company 25.6.3 Algenol Biofuels 25.6.4 Solazyme Inc 25.7 Biofuel production and its impact on environment 25.8 Challenges of biofuel commercialization from algae 25.9 Future prospective of biofuel References 26 Biointelligent quotient house as an algae-based green building 26.1 Introduction 26.2 Green buildings 26.3 Renewable energy applications in green buildings 26.4 Biointelligent quotient in Hamburg, Germany 26.5 University of technology Sydney green building case study 26.6 Conclusion References 27 National Renewable Energy Laboratory 27.1 Introduction 27.2 National Renewable Energy Laboratory 27.2.1 National Renewable Energy Laboratory history 27.2.2 Mission and programs 27.2.3 Bioenergy 27.2.4 Algal biofuels 27.3 History of National Renewable Energy Laboratory algal biofuels projects 27.3.1 Establishment of a 400+ bioenergy-focused microalgae strain collection using rapid, high-throughput methodologies 27.3.2 Molecular foundations of algal biofuel production: proteomics and transcriptomics of algal oil production 27.3.3 Evaluation of regulated enzymatic disruption of algal cell walls as an oil extraction technology 27.3.4 Development of novel microalgal production and downstream processing technologies for alternative biofuels application 27.3.5 Efficient use of algal biomass residues for anaerobic digestion biopower production coupled with nutrient recycle 27.3.6 Development of robust and high-throughput characterization technologies for algal biomass 27.4 Principal project 27.4.1 Project presentation 27.4.2 Project description 27.5 Microalgae isolation and characteristics during the project 27.5.1 Water sample collection and analysis 27.5.2 Laboratory conditions for growth algae 27.5.3 Laboratory water sampling preparation and enrichment 27.5.4 Fluorescent activated cell sorting for isolation of single cells 27.5.5 Culture maintenance 27.5.6 Summary of National Renewable Energy Laboratory project results 27.6 Limitation of industrial application 27.7 Conclusion of the project References 28 Aquatic species program 28.1 Introduction 28.2 Introduction to US department of energy 28.2.1 History of the department of energy 28.2.2 Department of energy mission 28.2.3 Organization 28.3 History of the algae species program 28.4 Microalgal isolation and characteristics 28.4.1 Sampling and collection 28.4.2 Serial dilution 28.4.3 Streak plate method 28.4.4 Density centrifugation 28.4.5 Enrichment media 28.4.6 Micromanipulation 28.4.7 Automated techniques 28.5 Relationship between National Renewable Energy Laboratory and algae species program 28.6 Limitations of industrial applications 28.6.1 High-cost 28.6.2 Resource availability 28.6.3 Cultivation challenges 28.6.4 The disconnect between the lab and the field 28.6.5 Dust issue 28.6.6 Commercialization potential 28.7 Conclusions of the project Acknowledgments References 29 Algal fuel production by industry: process simulation and economic assessment 29.1 Introduction 29.2 Life cycle assessment toward microalgae industrialization 29.3 Operating conditions 29.4 Algal biodiesel 29.5 Process simulation 29.6 Process description 29.7 Economic assessment References Index Back Cover