ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery

دانلود کتاب کتاب راهنمای سوخت های زیستی جلبکی: جنبه های کشت، تبدیل و پالایش زیستی

Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery

مشخصات کتاب

Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery

دسته بندی: فن آوری سوخت
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128237643, 9780128237649 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 700 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 54,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای سوخت های زیستی جلبکی: جنبه های کشت، تبدیل و پالایش زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Handbook of Algal Biofuels
Copyright Page
Contents
List of contributors
About the editors
1 Cyanoprokaryotes and algae: classification and habitats
	1.1 Introduction
	1.2 Key taxonomic characteristics of cyanoprokaryotes and algae
	1.3 Cyanoprokaryotes: taxonomic classification history, modern age, and perspectives
		1.3.1 History of cyanobacterial taxonomy
		1.3.2 The modern age of cyanobacterial taxonomy
		1.3.3 Development of the polyphasic approach
		1.3.4 The modern classification of cyanobacteria
		1.3.5 Present status and the future of cyanobacterial taxonomy
	1.4 History and present-day algal taxonomy
	1.5 Global distribution and habitats of cyanoprokaryotes and algae
		1.5.1 Aerial (subaerial or aerophytic) algae
		1.5.2 Terrestrial algae
		1.5.3 Aquatic algae
		1.5.4 Symbiotic algae
		1.5.5 Parasitic algae
		1.5.6 Algae living in extreme environments
	1.6 Conclusions and perspectives
	References
2 Global seaweeds diversity
	2.1 Introduction
	2.2 Basis of seaweeds classification
	2.3 The diverse groups of seaweeds
	2.4 Seaweeds composition based on classification
		2.4.1 Cell wall
		2.4.2 Pigments
		2.4.3 Carbohydrates
			2.4.3.1 Ulvan
			2.4.3.2 Laminarin
			2.4.3.3 Fucans
			2.4.3.4 Alginates
			2.4.3.5 Agar
			2.4.3.6 Carrageenan
		2.4.4 Lipids
	2.5 Global distribution of seaweeds
		2.5.1 Temperature
		2.5.2 Barriers
		2.5.3 Seaweeds production
	2.6 Symbiotic relation of seaweeds with other marine organisms
	2.7 Conclusion
	References
3 Biochemical compounds of algae: sustainable energy sources for biofuel production
	3.1 Introduction
	3.2 Lipids and fatty acids in algae
		3.2.1 Lipid groups in algal cells
		3.2.2 Triacylglycerol synthesis
		3.2.3 Factors affecting triacylglycerol synthesis
			3.2.3.1 Nutrients and trace metals
			3.2.3.2 Carbon sources
			3.2.3.3 Temperature
			3.2.3.4 Light intensity and sources
			3.2.3.5 Salinity
			3.2.3.6 pH
			3.2.3.7 Low-dose rate of ionizing radiation
			3.2.3.8 Low-dose cold atmospheric pressure plasma
	3.3 Carbohydrates
		3.3.1 Carbohydrates in algae
		3.3.2 Carbohydrates synthesis in algae
		3.3.3 Factors affecting carbohydrate synthesis
			3.3.3.1 Nutrients and trace metals
			3.3.3.2 Carbon sources
			3.3.3.3 Temperature
			3.3.3.4 Light sources and light intensity
			3.3.3.5 Salinity
			3.3.3.6 pH
			3.3.3.7 Low-dose gamma radiation
	3.4 Proteins
	3.5 Conclusion
	References
4 Algal physiology and cultivation
	4.1 Introduction
	4.2 Photosynthetic efficiency of algae
	4.3 Factors influencing growth and biochemical composition
	4.4 Microalgae cultivation system
	4.5 Artificial growth of seaweeds
	4.6 Cost analysis of algae cultivation
	4.7 Integrated cultivation system
	4.8 Conclusion
	Acknowledgments
	References
5 Genetic manipulation of microalgae for enhanced biotechnological applications
	5.1 Introduction
	5.2 Genetic modification of algae for the generation of energy and value-added metabolites
		5.2.1 Enhancement of bioenergy products
		5.2.2 Enhancement of carbohydrate accumulation in microalgae
		5.2.3 Other value-added compound production
	5.3 Advance methods used in genome editing
		5.3.1 RNA interference
		5.3.2 Zinc-finger nucleases for targeted genome editing
		5.3.3 CRISPR/Cas9
		5.3.4 Transcription activator-like effector nucleases
	5.4 Future perspectives of genetic engineering in microalgae
	5.5 Concluding remarks
	Acknowledgments
	References
6 The current status of various algal industries
	6.1 Introduction
	6.2 The algae industry
		6.2.1 Commercial production
	6.3 Main chemical compounds and bioactive compounds in algae
	6.4 Energy production
		6.4.1 Biofuels
			6.4.1.1 Bioethanol production
			6.4.1.2 Biodiesel
			6.4.1.3 Biomethane Production
		6.4.2 Biobutanol production
		6.4.3 Bio-oil
		6.4.4 Biohydrogen
		6.4.5 Advantage of the algal biomass for biodiesel and bioethanol production
		6.4.6 Challenges facing algae biomass for biofuel production
	6.5 Algae-based nonenergy field
		6.5.1 Pharmaceuticals
		6.5.2 Medicinal uses of algae drugs
		6.5.3 Antiviral activity of algal compounds
		6.5.4 Algae as a source of antioxidant properties
		6.5.5 Anticancer activity of algal substances
		6.5.6 Pigments and carotenoids
	6.6 Cosmetics
		6.6.1 Sunscreen
		6.6.2 Whitening
		6.6.3 Hair care
	6.7 Food ingredients and polymers
		6.7.1 Alginate
		6.7.2 Carragenans
		6.7.3 Agar
		6.7.4 Aquaculture feed
	6.8 Algae industrial companies
	6.9 Wastewater treatment by marine algae
		6.9.1 Removal of heavy metals and dyes
		6.9.2 Removal of nutrients
		6.9.3 Algae as a monitor of water quality
	6.10 Conclusion
	References
7 Algal biomass as a promising tool for CO2 sequestration and wastewater bioremediation: an integration of green technology...
	7.1 Introduction
	7.2 Strategies of carbon dioxide sequestration
		7.2.1 Nonbiological methods
		7.2.2 Biological sequestration
		7.2.3 Phytosequestration
	7.3 Carbon dioxide biosequestration using microalgae
	7.4 Bioremediation: an ecofriendly approach for wastewater treatment
	7.5 Algae-based wastewater treatment plants
		7.5.1 Algae-based municipal wastewater treatment process
			7.5.1.1 Waste stabilization pond systems
			7.5.1.2 High rate algal pond systems
		7.5.2 Effluent from industrial wastewater treatment plants and microalgae
	7.6 Algal bacterial symbiosis system for wastewater treatment: role and effect of carbon dioxide
		7.6.1 Microalgae–bacteria symbiosis mechanism
		7.6.2 Impact of Microalgae–bacteria system on the production of algal biomass and associated compounds
		7.6.3 Microalgal–bacteria relation and production of biofuel
			7.6.3.1 Biodiesel
			7.6.3.2 Biohydrogen
			7.6.3.3 Biogas and bioethanol
	7.7 Biosorption and bioaccumulation
		7.7.1 Biosorption
		7.7.2 Bioaccumulation
			7.7.2.1 Metal bioaccumulation induction to lipid production
			7.7.2.2 Biocoagulation
			7.7.2.3 Biodegradation/bioconversion
	7.8 Conclusion
	References
8 Application of halophilic algae for water desalination
	8.1 Introduction
	8.2 Marine environment
	8.3 Isolation of halophilic microalgae
	8.4 Efficiency of microalgae and seaweeds for water desalination
	8.5 Economic feasibility
	8.6 Role of algal biofuel in desalination process
	8.7 Conclusion
	References
9 Biofuel versus fossil fuel
	9.1 Introduction
	9.2 Mechanisms of fossil fuel and biofuel production
	9.3 Algal biomass
	9.4 Algal biodiesel and other types of physicochemical properties
	9.5 Combustion and emission parameters
	9.6 Conclusions
	Acknowledgments
	References
10 Algae for biodiesel production
	10.1 Introduction
	10.2 Lipids in algal biomass
		10.2.1 Lipids biosynthesis in algal biomass
		10.2.2 Lipid content and fatty acid profiles of algal biomass
		10.2.3 Effect of environmental conditions on algal lipids
			10.2.3.1 Nutrients effect (nitrogen, phosphorus, carbon, and micronutrients)
			10.2.3.2 Other environmental conditions (salinity, light, pH, and temperature)
	10.3 Different methods of transesterification
	10.4 Biodiesel characteristics
		10.4.1 Boiling point, flash point, and calorific value
		10.4.2 Cetane number, acid number, iodine number, and sulfur content
		10.4.3 Cloud point, cold filter plugging point, and pour point
		10.4.4 Kinematic viscosity and density
		10.4.5 Oxidation stability
		10.4.6 Water and sediment content
	10.5 Economic feasibility
	10.6 Conclusions and perspectives
	References
11 Eco-friendly biogas production from algal biomass
	11.1 Introduction
	11.2 Structural and chemical composition of seaweeds
		11.2.1 Moisture and salt content
		11.2.2 Structure composition
		11.2.3 Polysaccharides
		11.2.4 Chemical composition variability
	11.3 Anaerobic digestion
		11.3.1 Microbiology of anaerobic digestion
			11.3.1.1 Hydrolysis
			11.3.1.2 Acidogenesis
			11.3.1.3 Acetogenesis
			11.3.1.4 Methanogenesis
		11.3.2 Anaerobic digestion of seaweed
		11.3.3 Optimization of anaerobic digestion
		11.3.4 Anaerobic digestion process parameters
			11.3.4.1 Temperature and digester configuration
			11.3.4.2 Codigestion
	11.4 Pretreatments
		11.4.1 Physical treatment
			11.4.1.1 Mechanical treatment
			11.4.1.2 Size reduction
			11.4.1.3 Thermal treatment
			11.4.1.4 Microwave pretreatment
			11.4.1.5 Ultrasonic treatment
			11.4.1.6 Electrokinetic disintegration
			11.4.1.7 Extrusion
		11.4.2 Chemical treatment
			11.4.2.1 Alkali or acidic treatment
			11.4.2.2 Peroxide treatment
			11.4.2.3 Oxidative
			11.4.2.4 Ozonation
		11.4.3 Biological pretreatment
		11.4.4 Nanoparticles treatment
		11.4.5 Inhibitor removal
	11.5 The challenges of biogas production from algae
	11.6 Conclusion
	References
12 Algal biomass for bioethanol and biobutanol production
	12.1 Introduction
	12.2 Current biofuels status
	12.3 Bioalcohols
		12.3.1 Bioethanol
		12.3.2 Biobutanol
	12.4 Microalgae
	12.5 Biofuel production processes
		12.5.1 Biomass production
			12.5.1.1 The open pond production unit
			12.5.1.2 Closed photobioreactor production unit
			12.5.1.3 Hybrid two-stage production unit
			12.5.1.4 Heterotrophic biomass production
			12.5.1.5 Mixotrophic biomass production
		12.5.2 Biomass recovery/harvesting microalgal biomass
			12.5.2.1 Bulk harvesting
			12.5.2.2 Filtration
			12.5.2.3 Flocculation
			12.5.2.4 Flotation
		12.5.3 The dewatering process and biomass extraction
		12.5.4 Bioalcohols conversion
	12.6 Bioethanol from microalgae
	12.7 Biobutanol from microalgae
	12.8 Macroalgae
	12.9 Aquaculture seaweed cultivation
		12.9.1 Land-based cultivation systems
			12.9.1.1 Tanks
			12.9.1.2 Ponds
			12.9.1.3 Seaweed cultivation in the sea
			12.9.1.4 Species-specific cultivation methods employed
	12.10 Bioethanol from macroalgae
	12.11 Biobutanol from macroalgae
	12.12 Conclusion
	References
13 Thermochemical conversion of algal biomass
	13.1 Introduction
	13.2 Thermochemical conversion
	13.3 Pyrolysis
	13.4 Hydrothermal liquefaction
	13.5 Gasification
	13.6 Torrefaction
	13.7 Direct combustion
	13.8 Economic feasibility
	13.9 Conclusion
	Acknowledgment
	References
14 Direct biohydrogen production from algae
	14.1 Introduction
		14.1.1 Hydrogen production and applications
		14.1.2 Hydrogen as new vehicle energy source
		14.1.3 Development of hydrogen-dependent energy storage systems
	14.2 Biohydrogen as efficient future fuels
		14.2.1 Benefits of biohydrogen and future prospects
	14.3 Direct cellular biohydrogen production
		14.3.1 The photosynthetic electron transport chain in the natural system
		14.3.2 Photosystem II
		14.3.3 Photosystem I
		14.3.4 Hydrogenases
			14.3.4.1 NiFe-hydrogenases
			14.3.4.2 FeFe-hydrogenases
			14.3.4.3 Fe-hydrogenases
			14.3.4.4 Improving hydrogenases activity
	14.4 Photosynthetic hydrogen production—cyanobacteria
	14.5 Enhancing hydrogen production in microalgae by gene technology
		14.5.1 Overcoming O2 sensitivity of hydrogenase
			14.5.1.1 Partial photosystem II inactivation
			14.5.1.2 Increased O2 consumption/sequestration
		14.5.2 Elimination of competing pathways
	14.6 Biosystem and semiartificial system for photocurrent and biohydrogen productions
		14.6.1 Hydrogenase-ferredoxin fusion
		14.6.2 Complex of photosystem I and NiFe-hydrogenases via PsaE
		14.6.3 Wiring photosystem I through nanoconstruction
		14.6.4 Photosystem I-hydrogenase complex via nanowire from phylloquinone
		14.6.5 Fabrication of PsaD-hoxYH complex
	14.7 Conclusion
	References
15 Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation
	15.1 Introduction
	15.2 Biomass jet fuel conversion pathways
		15.2.1 Alcohol-to-jet conversion pathways
			15.2.1.1 Process description
			15.2.1.2 Economic perspective
			15.2.1.3 Assessment of life cycle
		15.2.2 Oil-to-jet conversion pathways
			15.2.2.1 Hydrogenated esters and fatty acids
			15.2.2.2 Process of catalytic hydrothermolysis
			15.2.2.3 Hydrotreated depolymerized cellulosic jet
			15.2.2.4 Economic perspective
			15.2.2.5 Assessment of life cycle
		15.2.3 Process of gas-to-jet fuel
			15.2.3.1 Process illustration
				15.2.3.1.1 Process of Fisher Tropsch biomass to liquid
				15.2.3.1.2 Process of gas fermentation
			15.2.3.2 Economic perspective
			15.2.3.3 Assessment of life cycle
		15.2.4 Process of sugar to jet fuel
			15.2.4.1 Sugar to jet processes
				15.2.4.1.1 Process of sugars to hydrocarbons catalytic upgrading
				15.2.4.1.2 Direct sugar to hydrocarbons
			15.2.4.2 Economic prospects
			15.2.4.3 Assessment of life cycle
	15.3 Algae biojet fuel
	15.4 Biojet fuel performance characteristics
		15.4.1 Stability of thermal oxidation
			15.4.1.1 Thermal stability
			15.4.1.2 Oxidation stability
		15.4.2 Combustion characteristics
			15.4.2.1 Smoke point
			15.4.2.2 Particulate matter emissions
			15.4.2.3 Gaseous emissions
			15.4.2.4 Derived cetane number
	15.5 Fuel compatibility with current fueling system of aircraft
		15.5.1 Volume-swells of seal material
		15.5.2 Lubricity
		15.5.3 Low-temperature-fluidity
			15.5.3.1 Freezing point
			15.5.3.2 Kinematic viscosity at −20°C
			15.5.3.3 Fuel volatility
			15.5.3.4 Flash point
		15.5.4 Distillation property
		15.5.5 Fuel-metering and aircraft-range
		15.5.6 Fuel density
	15.6 Process simulation
	15.7 Conclusions
	References
16 Photosynthetic microalgal microbial fuel cells and its future upscaling aspects
	16.1 Introduction
	16.2 What are photosynthetic microalgal microbial fuel cell
	16.3 Effect of light on the performance of photosynthetic microalgal microbial fuel cells
		16.3.1 Light-emitting diodes and photosynthetic microalgal microbial fuel cells
	16.4 DNA sequencing of microbial genomes
	16.5 Integrated approaches of photosynthetic microalgal microbial fuel cells
		16.5.1 Bioelectricity production
		16.5.2 Recycling wastewater
		16.5.3 Production of value-added chemicals
	16.6 Future of photosynthetic microalgal microbial fuel cells using diatoms
	16.7 Conclusions
	Acknowledgments
	Conflict of Interest
	References
17 Sequential algal biofuel production through whole biomass conversion
	17.1 Introduction
	17.2 Different processes of algal biofuel production
		17.2.1 Biohydrogen
		17.2.2 Biomethane
		17.2.3 Biodiesel
		17.2.4 Bioethanol/biobutanol (bioalcohols)
		17.2.5 Algal fuel cells
	17.3 Recent trends in sequential algal biofuel production
	17.4 Conclusion
	References
18 By-products recycling of algal biofuel toward bioeconomy
	18.1 Introduction
	18.2 Applications of algae by-products
	18.3 Microalgal by-products of biomasses conversion processes
	18.4 By-products from ethanol production
	18.5 Glycerol by-products of biodiesel productions
	18.6 By-products from bio-oil fuel production
	18.7 Microalgal-based protein by-products
	18.8 Environmental impact of biodiesel and by-products
	18.9 Economic feasibility of microalgae biodiesel
	18.10 Future research focus and perspectives
	18.11 Conclusion
	References
19 Harnessing solar radiation for potential algal biomass production
	19.1 Introduction
	19.2 Solar cells
		19.2.1 First-generation solar cell
		19.2.2 Second-generation (thin film) solar cells
		19.2.3 Third-generation solar cells
		19.2.4 Fourth-generation solar cells
	19.3 Solar panel
	19.4 Different applications of solar radiation
		19.4.1 Agrophotovoltaic
		19.4.2 Aquavoltaic
		19.4.3 Solar tractors
		19.4.4 Solar photovoltaic (PV) systems
		19.4.5 Solar water pumping
		19.4.6 Solar dryers
		19.4.7 Solar distillation
		19.4.8 Biomass to electricity conversion using solar radiation
		19.4.9 Solar cooker
		19.4.10 Solar water heater
	19.5 Conversion of solar radiation to algal biomass
		19.5.1 The mechanism of light absorption in algae
		19.5.2 Strategic management of harnessing solar radiation for algal cultivation
		19.5.3 Constraints effecting the growth of algae
	19.6 Solar tracking system
		19.6.1 Classification of solar trackers
			19.6.1.1 Classification based on their control
			19.6.1.2 Classification based on driving systems
			19.6.1.3 Classification based on degree of freedom
		19.6.2 Classification based on tracking strategy
		19.6.3 Efficacy of solar tracker in harnessing solar energy for algal cultivation
		19.6.4 Different modes of operation of a solar tracker coupled with photobioreactor
	19.7 Solar to heat for thermochemical conversion of algal biomass
		19.7.1 Classification of thermochemical processes
	19.8 Technoeconomic considerations for different routes of conversion of algae
		19.8.1 Study based on four different scenarios
		19.8.2 Study based on 3 different biorefinery routes
	19.9 Conclusion
	Acknowledgment
	Conflict of interest
	References
	Further reading
20 Physical stress for enhanced biofuel production from microalgae
	20.1 Introduction
	20.2 Nutrient stress
	20.3 Physical stress
		20.3.1 Temperature
		20.3.2 Carbon dioxide
		20.3.3 pH
		20.3.4 Light
		20.3.5 Radiation
			20.3.5.1 Ultraviolet radiation
			20.3.5.2 Gamma radiation
			20.3.5.3 Ion beam radiation
		20.3.6 Magnetic field
		20.3.7 Atmospheric room temperature plasma
	20.4 Challenges and future directions of physical stress
	20.5 Conclusion
	References
21 Microalgal–bacterial consortia for biomass production and wastewater treatment
	21.1 Introduction
	21.2 Interchange of substrates, intercellular communication, and horizontal gene transfer in microalgal–bacterial consortia
	21.3 Distribution and role of microalgal–bacterial consortia in the wastewater treatment
		21.3.1 Role of microalgal–bacterial consortia in mitigation of carbon and nutrients
		21.3.2 Heavy metal removal and sequestering of hazardous waste by microalgal–bacterial consortia
	21.4 Biofuel and bioproducts generation by microalgal–bacterial consortia
	21.5 Reduction in CO2 emission and electricity generation
		21.5.1 Implementation of genomic approaches for wastewater treatment
	21.6 Role of lipase in wastewater treatment
		21.6.1 Microbial lipase-mediated biocatalysis
		21.6.2 Potential microbial strains used for the processing of complex oil and lipid
		21.6.3 Analysis of the cumulative effect of enzymatic prehydrolysis on anaerobic digestion of various industrial wastewaters
		21.6.4 Role of lipase enzymes in activated sludge systems
		21.6.5 Immobilized enzyme and whole-cell biocatalysts in lipid bioremediation
		21.6.6 Conversion of lipid contaminated wastewater into value-added products
	21.7 Conclusions
	Acknowledgments
	References
22 Process intensification for sustainable algal fuels production
	22.1 Introduction
		22.1.1 Principles and domains of process intensification
		22.1.2 Algal to biofuels pathways
	22.2 Intensification of photobioreactors
		22.2.1 Light saturation and light dilution
			22.2.1.1 Solar tracking systems
			22.2.1.2 Spectral filtration and shifting
		22.2.2 Light attenuation and light path length reduction
			22.2.2.1 Thin layer reactors
			22.2.2.2 Biofilm reactors
			22.2.2.3 Light guides
		22.2.3 Carbon dioxide distribution
			22.2.3.1 Microbubbling and membrane diffusers
			22.2.3.2 High alkalinity
	22.3 Harvesting
		22.3.1 Membrane filtration
		22.3.2 Flotation
	22.4 Biomass conversion to biofuel
		22.4.1 Cell disruption
			22.4.1.1 Pulse electric field
			22.4.1.2 Simultaneous cell disruption and lipid extraction
		22.4.2 Intensification of drying and oil extraction
		22.4.3 Biodiesel production
		22.4.4 Wet processing via hydrothermal liquefaction
	22.5 Conclusion
	References
23 Life cycle assessment for microalgae-derived biofuels
	23.1 Introduction
	23.2 Pros and cons of algal biofuel production
	23.3 Life cycle assessment approach
		23.3.1 Phases of the life cycle assessment
			23.3.1.1 Goal determination and scope definition
			23.3.1.2 Inventory analysis
			23.3.1.3 Impact assessment
			23.3.1.4 Interpretation
			23.3.1.5 Reporting
		23.3.2 Life cycle assessment approach for algal-derived biofuel
			23.3.2.1 Assessment of biofuel raw materials
			23.3.2.2 Synthesis of oil/lipid yield of microalgae
			23.3.2.3 Assessment of species used for biofuel production
			23.3.2.4 Assessment of cultivation systems and reactor types
			23.3.2.5 Assessment of harvesting and extraction processes and lipid quantification
			23.3.2.6 Assessment of algal residuals processing (coproducts/byproducts)
	23.4 Benefits on application of life cycle assessment for microalgal biofuel commercial production
	23.5 Current scenario on production and application of biofuels
	23.6 Future prospective
	23.7 Conclusions
	Acknowledgment
	References
24 An overview of the algal biofuel technology: key challenges and future directions
	24.1 Introduction
	24.2 Challenges
		24.2.1 Cultivation
			24.2.1.1 Macroalgae cultivation
			24.2.1.2 Microalgal cultivation
		24.2.2 Harvesting
			24.2.2.1 Macroalgae harvesting
			24.2.2.2 Microalgae harvesting
				24.2.2.2.1 Conventional harvesting methods
					Centrifugation
					Flotation
					Filtration
					Flocculation
				24.2.2.2.2 Advanced harvesting method
					Magnetic nanoparticles
					Polymeric nanomaterials
					Hybrid nanoparticles
	24.3 Lipid extraction
		24.3.1 Biofuel production
		24.3.2 Economic studies
	24.4 Future perspectives
	24.5 Conclusions
	Acknowledgment
	References
25 History and recent advances of algal biofuel commercialization
	25.1 Introduction and history of biofuel production
	25.2 Recent advancement in large-scale biofuel production
	25.3 Pilot-scale and large-scale trials of algal biofuel production
	25.4 Top companies of biofuel production from different feedstocks
		25.4.1 Eni Gela biorefinery in Europe
		25.4.2 Australian Renewable Fuels Limited
		25.4.3 Blue fire renewables
		25.4.4 Cosan Limited
	25.5 Top companies of algal products commercialization
		25.5.1 Earthrise Nutritionals
		25.5.2 Yunnan Green A Biological Project Co. Ltd
		25.5.3 Inner Mongolia Rejuve Biotech Co. Ltd
		25.5.4 Fuqing King Dnarmsa Spirulina Co. Ltd
		25.5.5 Far East Microalgae Industries Co. Ltd
		25.5.6 Cyanotech Corporation
	25.6 Top companies of biofuel production from algae
		25.6.1 Sapphire Energy Limited
		25.6.2 Solix Biofuels company
		25.6.3 Algenol Biofuels
		25.6.4 Solazyme Inc
	25.7 Biofuel production and its impact on environment
	25.8 Challenges of biofuel commercialization from algae
	25.9 Future prospective of biofuel
	References
26 Biointelligent quotient house as an algae-based green building
	26.1 Introduction
	26.2 Green buildings
	26.3 Renewable energy applications in green buildings
	26.4 Biointelligent quotient in Hamburg, Germany
	26.5 University of technology Sydney green building case study
	26.6 Conclusion
	References
27 National Renewable Energy Laboratory
	27.1 Introduction
	27.2 National Renewable Energy Laboratory
		27.2.1 National Renewable Energy Laboratory history
		27.2.2 Mission and programs
		27.2.3 Bioenergy
		27.2.4 Algal biofuels
	27.3 History of National Renewable Energy Laboratory algal biofuels projects
		27.3.1 Establishment of a 400+ bioenergy-focused microalgae strain collection using rapid, high-throughput methodologies
		27.3.2 Molecular foundations of algal biofuel production: proteomics and transcriptomics of algal oil production
		27.3.3 Evaluation of regulated enzymatic disruption of algal cell walls as an oil extraction technology
		27.3.4 Development of novel microalgal production and downstream processing technologies for alternative biofuels application
		27.3.5 Efficient use of algal biomass residues for anaerobic digestion biopower production coupled with nutrient recycle
		27.3.6 Development of robust and high-throughput characterization technologies for algal biomass
	27.4 Principal project
		27.4.1 Project presentation
		27.4.2 Project description
	27.5 Microalgae isolation and characteristics during the project
		27.5.1 Water sample collection and analysis
		27.5.2 Laboratory conditions for growth algae
		27.5.3 Laboratory water sampling preparation and enrichment
		27.5.4 Fluorescent activated cell sorting for isolation of single cells
		27.5.5 Culture maintenance
		27.5.6 Summary of National Renewable Energy Laboratory project results
	27.6 Limitation of industrial application
	27.7 Conclusion of the project
	References
28 Aquatic species program
	28.1 Introduction
	28.2 Introduction to US department of energy
		28.2.1 History of the department of energy
		28.2.2 Department of energy mission
		28.2.3 Organization
	28.3 History of the algae species program
	28.4 Microalgal isolation and characteristics
		28.4.1 Sampling and collection
		28.4.2 Serial dilution
		28.4.3 Streak plate method
		28.4.4 Density centrifugation
		28.4.5 Enrichment media
		28.4.6 Micromanipulation
		28.4.7 Automated techniques
	28.5 Relationship between National Renewable Energy Laboratory and algae species program
	28.6 Limitations of industrial applications
		28.6.1 High-cost
		28.6.2 Resource availability
		28.6.3 Cultivation challenges
		28.6.4 The disconnect between the lab and the field
		28.6.5 Dust issue
		28.6.6 Commercialization potential
	28.7 Conclusions of the project
	Acknowledgments
	References
29 Algal fuel production by industry: process simulation and economic assessment
	29.1 Introduction
	29.2 Life cycle assessment toward microalgae industrialization
	29.3 Operating conditions
	29.4 Algal biodiesel
	29.5 Process simulation
	29.6 Process description
	29.7 Economic assessment
	References
Index
Back Cover




نظرات کاربران