دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Z-G. Ye (Eds.)
سری: Woodhead Publishing Series in Electronic and Optical Materials
ISBN (شابک) : 9781845691868
ناشر: Woodhead Publishing
سال نشر: 2008
تعداد صفحات: 1054
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای مواد پیشرفته دی الکتریک ، پیزوالکتریک و فروالکتریک. سنتز ، خصوصیات و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Handbook of dielectric, piezoelectric and ferroelectric materials......Page 4
Contents......Page 6
Contributor contact details......Page 20
Introduction......Page 28
Part I. High-strain, high-performance piezo- and ferroelectric single crystals......Page 32
1.1 Introduction......Page 34
1.2 Crystal growth......Page 37
1.3 Imperfection......Page 44
1.4 Property characterization......Page 46
1.5 Optimization of cut directions......Page 56
1.6 Conclusions and future trends......Page 61
1.7 Appendix......Page 62
1.8 References......Page 66
2.1 Introduction......Page 69
2.2 Flux growth of PZN–PT and PMN–PT single crystals......Page 71
2.3 Effect of flux composition......Page 73
2.4 Growth of relaxor single crystals of low PT contents: PZN–(4–7)%PT......Page 75
2.5 Flux growth of relaxor single crystals of high PT contents: PMN–(28–34)% PT......Page 78
2.6 Other commonly encountered problems......Page 83
2.7 Properties of flux-grown PZN–PT and PMN–PT single crystals......Page 88
2.8 Comparison with reported property values......Page 91
2.9 Future trends......Page 93
2.10 Conclusions......Page 95
2.12 References and further reading......Page 96
3.1 Introduction......Page 104
3.2 Crystal growth and characterization of relaxor piezoelectrics......Page 105
3.3 Dynamic performance of piezoelectric crystals with frequency and dc bias......Page 114
3.4 Single crystal piezoelectric actuators......Page 118
3.5 Single crystal piezoelectric transducers......Page 123
3.6 Conclusions and future trends......Page 128
3.7 References......Page 129
4.1 Introduction......Page 132
4.2 Piezoelectric single crystals......Page 133
4.3 Single crystal transducers......Page 138
4.4 Conclusions and future trends......Page 156
4.5 References......Page 158
5.1 Introduction......Page 161
5.3 Modification of PMNT single crystals......Page 166
5.4 Relaxor–PT systems with high Curie temperature......Page 168
5.5 High TC bismuth-based perovskite single crystals......Page 172
5.6 Non-perovskite piezoelectric single crystals......Page 176
5.7 Summary......Page 180
5.8 Future trends......Page 181
5.10 References......Page 182
6.1 Introduction......Page 189
6.2 Solid-state crystal growth (SSCG) process......Page 190
6.3 Dielectric and piezoelectric properties of BZT, PMN–PT, and PMN–PZT single crystals......Page 194
6.5 References......Page 201
7.1 Introduction......Page 204
7.2 Synthesis, structure, morphotropic phase diagram and properties of the (1–x)Pb(Sc1/2Nb1/2)O3–xPbTiO3 solid solution cerami......Page 207
7.3 Growth of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3 and (1–x)Pb(Sc1/2Nb1/2)O3–xPbTiO3 single crystals......Page 216
7.4 Properties of Pb(Sc1/2Nb1/2)O3 and (1–x)Pb(Sc1/2Nb1/2)O3–xPbTiO3 single crystals......Page 222
7.5 Concluding remarks and future trends......Page 232
7.7 References......Page 233
8.1 Introduction......Page 236
8.2 PIMNT ceramics......Page 239
8.3 PIMNT single crystals grown by the flux method......Page 243
8.4 PIMNT and PSMNT single crystals grown by the Bridgman method......Page 247
8.5 Future trends......Page 258
8.6 Conclusions......Page 259
8.7 References......Page 260
Part II. Field-induced effects and domain engineering......Page 264
9.1 Introduction......Page 266
9.2 Technical challenges and characterization methods......Page 268
9.3 Complete set material properties for a few compositions of PMN–PT and PZN–PT single crystals......Page 279
9.4 Correlation between single domain and multi-domain properties and the principle of property enhancement in domain engineere......Page 287
9.5 Summary......Page 291
9.6 References......Page 294
10.1 Introduction......Page 297
10.2 History of engineered domain configuration......Page 298
10.3 Effect of engineered domain configuration on piezoelectric property......Page 299
10.4 Crystal structure and crystallographic orientation dependence of BaTiO3 crystals with various engineered domain configurat......Page 300
10.5 Domain size dependence of BaTiO3 crystals with engineered domain configurations......Page 309
10.6 Role of non-180° domain wall region on piezoelectric properties......Page 317
10.7 New challenge of domain wall engineering using patterning electrode......Page 321
10.8 New challenge of domain wall engineering using uniaxial stress field......Page 325
10.9 What is domain wall engineering?......Page 329
10.10 Conclusions and future trends......Page 331
10.12 References......Page 332
11.1 Introduction......Page 335
11.2 Deformation of perovskite crystals under external fields......Page 336
11.3 Anisotropy of a free energy and piezoelectric enhancement......Page 348
11.4 Final remarks......Page 358
11.5 References......Page 360
12.1 Introduction......Page 364
12.2 Experimental methods......Page 366
12.3 Polarizing microscopy as applied to perovskite-structure crystals......Page 367
12.4 Thermal stability for various PMN–PT compositions......Page 372
12.5 Field-dependent domain structures of various PMN–PT compositions......Page 380
12.6 Field-poling effect on optical properties......Page 388
12.7 Relation of results to Landau free energy......Page 390
12.8 Conclusions......Page 393
12.9 References and further reading......Page 394
13.1 Introduction......Page 397
13.2 Background......Page 398
13.3 Multi-field-induced phase transitions......Page 399
13.4 Energy analysis of phase transitions......Page 404
13.5 Discussion......Page 412
13.6 Concluding remarks and future trends......Page 413
13.8 References......Page 414
Part III. Morphotropic phase boundary and related phenomena......Page 420
14.1 Introduction......Page 422
14.2 Historical context......Page 423
14.3 Structure of archetypal relaxors PbMg1/3Nb2/3O3 (PMN) and PbSc1/2Nb1/2O3 (PSN)......Page 426
14.4 Towards the MPB: substitution of titanium......Page 443
14.5 Stability of the MPB phases under external and internal fields......Page 460
14.6 Conclusions and future trends......Page 463
14.8 References......Page 471
15.1 Introduction......Page 478
15.2 Size effects in ferroelectrics......Page 479
15.3 The relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 solid solution......Page 481
15.4 Processing of submicrometre- and nanostructured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics......Page 483
15.5 Size effects on the macroscopic properties of 0.8 Pb(Mg1/3Nb2/3)O3–0.2PbTiO3......Page 484
15.6 Size effects on the macroscopic properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3......Page 492
15.7 Final remarks and future trends......Page 497
15.8 References......Page 498
Part IV. High-power piezoelectric and microwave dielectric materials......Page 504
16.1 Introduction......Page 506
16.2 General consideration of loss and hysteresis in piezoelectrics......Page 507
16.3 Losses at a piezoelectric resonance......Page 515
16.4 Heat generation in piezoelectrics......Page 519
16.5 Loss anisotropy......Page 521
16.6 High-power piezoelectric ceramics......Page 522
16.7 High-power piezoelectric components......Page 529
16.8 Summary and conclusions......Page 531
16.11 References......Page 532
17.1 Introduction......Page 534
17.2 Crystal structures in the BZN system......Page 535
17.3 Phase equilibrium and phase relation of BZN pyrochlores......Page 540
17.4 Dielectric properties of BZN pyrochlores......Page 545
17.5 Potential RF and microwave applications......Page 556
17.6 Summary and future trends......Page 563
17.8 References......Page 565
Part V. Nanoscale piezo- and ferroelectrics......Page 570
18.1 Introduction......Page 572
18.2 Ferroelectric nanostructures......Page 573
18.3 Self-patterning......Page 580
18.4 Magnetoelectrics and magnetoelectric devices......Page 582
18.5 Toroidal and circular ordering of ferroelectric domains in ferroics......Page 584
18.6 Electron emission from ferroelectrics......Page 585
18.8 Electrocaloric cooling for mainframes and MEMs......Page 586
18.9 Interfacial phenomena......Page 588
18.10 Phased-array radar......Page 589
18.13 Ultra-thin single crystals......Page 590
18.14 Summary......Page 591
18.15 Future trends......Page 592
18.17 References......Page 594
19.1 Introduction......Page 601
19.2 Methods......Page 603
19.3 Domains in ferroelectric thin films......Page 604
19.4 Domains in one-dimensional and zero-dimensional ferroelectrics......Page 622
19.7 References......Page 628
20.1 Introduction......Page 631
20.2 Preparation of nano-islands......Page 632
20.3 Physical properties of the nano-islands......Page 641
20.4 Conclusions and future trends......Page 649
20.6 References......Page 651
21.1 Introduction......Page 653
21.2 Main experimental stages of domain structure evolution during polarization reversal in normal ferroelectrics......Page 655
21.3 Materials and experimental conditions......Page 658
21.4 General consideration......Page 662
21.5 Domain growth: from quasi-equilibrium to highly non-equilibrium......Page 669
21.6 Self-assembled nanoscale domain structures......Page 676
21.7 Modern tricks in nanoscale domain engineering......Page 680
21.8 Polarization reversal in relaxors......Page 688
21.9 Conclusions and future trends......Page 694
21.11 References......Page 695
22.1 Introduction......Page 701
22.2 Interface defects and dielectric properties of bulk ferroelectric materials......Page 702
22.3 Interdiffusion in bulk ceramics and composites......Page 705
22.4 Summary and future trends......Page 717
22.5 References......Page 718
Part VI. Piezo- and ferroelectric films......Page 724
23.1 Introduction......Page 726
23.2 Pulsed laser deposition of epitaxial ferroelectric oxide thin films......Page 727
23.3 Epitaxial ferroelectric oxide thin films and nanostructures with extended structural defects......Page 728
23.4 Single crystalline PbTiO3 and PZT 20/80 films free from extended structural defects......Page 740
23.5 Comparison of ferroelectric properties of PZT 20/80 films with and without extended structural defects......Page 745
23.6 Summary......Page 748
23.8 References......Page 750
24.1 Introduction......Page 755
24.2 A composite coating process for preparing thick film on silicon wafer......Page 756
24.3 Characterization of spin-coated thick films......Page 760
24.4 Piezoelectric micromachined ultrasonic transducer (pMUT) based on thick PZT film......Page 764
24.5 Microfabrication of thick film pMUT......Page 768
24.6 Performances of thick film pMUT......Page 773
24.7 Summary......Page 782
24.9 References......Page 784
25.1 Introduction......Page 787
25.2 Size effects......Page 788
25.3 Heterogeneous thin films: superlattices and gradients......Page 795
25.4 Symmetry and ferroelectric properties: polarization rotation and lattice softening......Page 798
25.5 Strain effects on ferroelectric thin films......Page 807
25.6 Conclusion and future trends......Page 814
25.7 Further reading......Page 816
25.9 References......Page 817
Part VII. Novel processing and new materials......Page 828
26.1 Enhancement of piezoelectric properties of perovskite-structured ceramics by texture formation......Page 830
26.2 Reactive-templated grain growth method......Page 832
26.3 Selection of reactive templates......Page 838
26.4 Factors determining texture development......Page 840
26.5 Application to solid solutions......Page 842
26.6 Conclusions and future trends......Page 844
26.7 References......Page 845
27.1 Introduction......Page 849
27.2 Bismuth layer-structured ferroelectrics (BLSF)......Page 850
27.3 Grain orientation and HOT-Forging (HF) method......Page 853
27.4 Grain orientation effects on electrical properties......Page 854
27.5 Conclusions and future trends......Page 878
27.7 References......Page 880
28.1 Introduction......Page 883
28.2 Soft chemical methods for the synthesis of mixed metal oxides......Page 884
28.3 Polyethylene glycol-based new sol–gel route to relaxor ferroelectric solid solution (1 – x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (x =......Page 886
28.4 New soft chemical methods for the synthesis of ferroelectric SrBi2Ta2O9......Page 896
28.5 Novel sol–gel route to ferroelectric Bi4Ti3O12 and Bi4-xLaxTi3O12 ceramics......Page 904
28.6 Future trends......Page 907
28.8 References......Page 910
29.1 Introduction......Page 915
29.2 Mechanisms of generation of KNbO3 nanoparticles......Page 916
29.3 Fabrication of KNbO3 thin film......Page 920
29.5 References......Page 925
30.1 Introduction......Page 927
30.2 Lead-free relaxor ceramics derived from BaTiO3......Page 928
30.4 Crossover from a ferroelectric to a relaxor state......Page 937
30.5 Lead-free relaxors with tetragonal bronze (TTB) structure......Page 943
30.6 Ceramics containing bismuth......Page 949
30.8 References......Page 955
Part VIII. Novel properties of ferroelectrics and related materials......Page 962
31.1 Introduction......Page 964
31.2 Preparation of DSLs by modulation of ferroelectric domains......Page 966
31.3 Preparation of DSL by the photorefractive effect......Page 972
31.4 Application of DSLs in nonlinear parametric interactions......Page 973
31.5 Application of DSLs in acoustics......Page 984
31.6 Application of DSLs in electro-optic technology......Page 988
31.7 Outlook......Page 991
31.9 References and further reading......Page 992
32.1 Introduction......Page 1002
32.2 Preparation of artificial superlattices......Page 1004
32.3 Lattice distortions in artificial superlattices......Page 1011
32.4 Optical property of artificial superlattices......Page 1014
32.5 Dielectric properties of artificial superlattices......Page 1018
32.6 Conclusions and future trends......Page 1032
32.7 References......Page 1033
33.1 Introduction......Page 1037
33.2 Crystal structure......Page 1039
33.3 Electronic band structure and density of states (DOS)......Page 1042
33.4 Defect structure......Page 1046
33.5 Domain structure......Page 1051
33.6 Leakage current......Page 1054
33.7 Polarization properties......Page 1056
33.8 Effects of La and Nd substitutions on the electronic band structure and chemical bonding......Page 1058
33.9 Summary......Page 1059
33.10 Future trends......Page 1060
33.11 References......Page 1061
Index......Page 1064