دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Jacek Rak (editor). David Hutchison (editor)
سری: Computer Communications and Networks
ISBN (شابک) : 3030446840, 9783030446840
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 813
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Guide to Disaster-Resilient Communication Networks (Computer Communications and Networks) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای شبکه های ارتباطی مقاوم در برابر بلایا () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد معتبر راهنمای جامعی برای ارزیابی و طراحی سیستمهای شبکهای با انعطافپذیری بهبود یافته در برابر بلایا ارائه میدهد. این متن دیدگاههای روشنگرانهای را در مورد مسائل مربوط به تمام سناریوهای شکست بزرگ، از جمله بلایای طبیعی، اختلالات ناشی از شرایط نامساعد جوی، خرابیهای عظیم مرتبط با فناوری، و فعالیتهای مخرب انسانی ارائه میدهد.
موضوعات و ویژگیها: روشها و مدلهایی برای تحلیل و ارزیابی شبکههای ارتباطی مقاوم در برابر بلایا؛ تکنیک های طراحی و بهبود سیستم های مقاوم در برابر بلایا را بررسی می کند. طیف وسیعی از طرح ها و الگوریتم ها را برای سیستم های انعطاف پذیر ارائه می دهد. موضوعات پیشرفته مختلف مربوط به سیستم های ارتباطی انعطاف پذیر را بررسی می کند. بینشهایی را از منتخبی بینالمللی از بیش از 100 محقق متخصص که در بخشهای دانشگاهی، صنعتی و دولتی کار میکنند، ارائه میکند. ارائه پشتیبانی ارزشمند در مورد موضوعات تجهیزات و نرم افزارهای شبکه انعطاف پذیر، یک مرجع ضروری برای متخصصان شبکه از جمله اپراتورهای شبکه و سیستم های شبکه، فروشندگان تجهیزات شبکه، ارائه دهندگان خدمات ضروری و تنظیم کننده ها است. این کار همچنین میتواند بهعنوان یک کتاب درسی تکمیلی برای دورههای تحصیلات تکمیلی و دکترا در مورد تابآوری سیستمهای شبکهای باشد.
This authoritative volume presents a comprehensive guide to the evaluation and design of networked systems with improved disaster resilience. The text offers enlightening perspectives on issues relating to all major failure scenarios, including natural disasters, disruptions caused by adverse weather conditions, massive technology-related failures, and malicious human activities.
Topics and features: describes methods and models for the analysis and evaluation of disaster-resilient communication networks; examines techniques for the design and enhancement of disaster-resilient systems; provides a range of schemes and algorithms for resilient systems; reviews various advanced topics relating to resilient communication systems; presents insights from an international selection of more than 100 expert researchers working across the academic, industrial, and governmental sectors.
This practically-focused monograph, providing invaluable support on topics of resilient networking equipment and software, is an essential reference for network professionals including network and networked systems operators, networking equipment vendors, providers of essential services, and regulators. The work can also serve as a supplementary textbook for graduate and PhD courses on networked systems resilience.
Preface Acknowledgements Contents 1 Fundamentals of Communication Networks Resilience to Disasters and Massive Disruptions 1.1 Introduction 1.2 Examples of Disasters and Massive Disruptions: Impact on Communication Networks 1.2.1 Natural Disasters 1.2.2 Massive Disruptions by Adverse Weather Conditions 1.2.3 Technology-Related Massive Failures 1.2.4 Massive Failures Due to Malicious Human Activities 1.3 QoS (Quality of Service) and QoR2 (Quality of Remediation/Recovery) in Networked Systems 1.3.1 Disaster-Related Challenges 1.3.2 A Strategy for Network Resilience: D2R2+DR 1.4 Measures and Models to Evaluate Disaster-Resilience of Communication Networks 1.5 Techniques for Design/Update of Disaster-Resilient Systems 1.6 Algorithms and Schemes for Resilient Systems 1.7 Advanced Topics in Resilient Communication Systems 1.7.1 SDN and NFV 1.7.2 5G and Critical Infrastructure 1.7.3 Vehicular Communications 1.7.4 Human Factors 1.8 Conclusions References Part I Measures and Models for the Analysis and Evaluation of Disaster-Resilient Communication Networks 2 Functional Metrics to Evaluate Network Vulnerability to Disasters 2.1 Introduction 2.2 Metrics for Functional Evaluations 2.2.1 Objective Metrics 2.2.2 Subjective Metrics 2.3 Case Study 2.3.1 Evaluation Setup 2.3.2 Use Case: Adaptive Video Streaming 2.4 Conclusions References 3 Vulnerability Evaluation of Networks to Multiple Failures Based on Critical Nodes and Links 3.1 Introduction 3.2 Critical Node Detection (CND) 3.2.1 Exact Methods for CND 3.2.2 Centrality-Based Heuristics for CND 3.3 Critical Link Detection (CLD) 3.3.1 Exact Methods for CLD 3.3.2 Centrality-Based Heuristics for CLD 3.4 Computational Results 3.4.1 Problem Instances 3.4.2 Analysis of CND Results 3.4.3 Analysis of CLD Results 3.5 Conclusions References 4 How to Model and Enumerate Geographically Correlated Failure Events in Communication Networks 4.1 Introduction 4.2 Notions Related to Vulnerable Regions 4.3 Calculating Lists of SRLGs 4.3.1 General Practices for SRLG Enumeration 4.3.2 Precise Polynomial Algorithms Enumerating SRLGs 4.3.3 Approximate Polynomial Algorithms Listing SRLGs 4.3.4 More SRLG Enumerating Approaches 4.4 Calculating Lists of PSRLGs 4.4.1 Computing Lists of FPs and CFPs 4.4.2 Probabilistic Modelling of the Worst Place of a Disaster 4.4.3 On Two-Stage PSRLGs and Denomination Issues 4.5 Advanced: SRLG Lists Obtained from PSRLG Lists 4.6 A Mind Map of the Chapter 4.7 Conclusions References 5 Comparing Destructive Strategies for Attacking Networks 5.1 Introduction 5.1.1 Representing the Network Topology by a Graph 5.1.2 Adjacency and Weighted Adjacency Matrices 5.1.3 Laplacian Matrix 5.1.4 Walks, Paths and Shortest Paths 5.2 Robustness of Networks 5.3 Metrics Used for Robustness Analysis 5.3.1 Centrality Metrics 5.3.2 Structural Metrics 5.4 Case Studies 5.4.1 Data of Three Types of Real-World Infrastructures 5.4.2 The Effect of Node Attacks on the Relative Size of the Largest Connected Component 5.4.3 Comparing the Attack Strategies in Real-World Networks 5.4.4 The Impact of Attacking Links: An Example 5.5 Conclusions References 6 Modelling of Software Failures 6.1 Introduction 6.2 Risks Associated with Software Failures in 5G 6.3 The Software Failure Process 6.3.1 Faults, Errors and Failures 6.3.2 Failure Modes and Semantics 6.3.3 The Input/Output Model of Software Failing 6.3.4 Moore/Mealy Model of Continuously Operating Software 6.3.5 Coinciding Software Failures 6.4 Modelling of Handling Software Failures within an SDN Controller 6.4.1 Short Review of Controller Models Including Software Failing 6.4.2 Modelling of Failure Dynamics in SDN Controller Platforms 6.4.3 Dependability Evaluation of SDN Controller 6.5 Predictive Modelling of Software Defects in SDN Controllers 6.5.1 Dependability Assurance with SRGM 6.5.2 An Empirical Case Study of Reliability Growth in SDN Controllers 6.5.3 Discussion 6.6 Conclusions References Part II Techniques for Design and Update of Disaster-Resilient Systems 7 Improving the Survivability of Carrier Networks to Large-Scale Disasters 7.1 Introduction 7.2 Analysis of Disaster Risk in Carrier Networks 7.3 Disaster-Aware Submarine Fibre-Optic Cable Deployment 7.4 Selection of Robust Nodes to Improve the Connectivity Impact of Multiple Node Failures 7.4.1 RNS Exact Method 7.4.2 RNS Heuristic Method 7.4.3 Numerical Results 7.5 Topology Design/Upgrade of Optical Networks Resilient to Multiple Node Failures 7.5.1 Multi-Start Greedy Randomized Method 7.5.2 Numerical Results 7.6 Conclusions References 8 Security-Aware Carrier Network Planning 8.1 Introduction 8.2 Overview of Optical Technologies in Carrier Networks 8.3 Introduction to Modelling and Optimization of Carrier Optical Networks 8.3.1 Routing and Wavelength Assignment in WDM Networks 8.3.2 Routing and Spectrum Allocation in EONs 8.3.3 Routing, Space and Spectrum Allocation in SS-FONs 8.4 RWA Algorithms Against Jamming Attacks 8.5 Device Placement to Monitor Jamming Attacks 8.6 Multi-Period Network Planning Against Jamming Attacks 8.7 Network Planning Against Eavesdropping Attacks 8.8 Conclusions References 9 Secure and Resilient Communications in the Industrial Internet 9.1 Introduction 9.1.1 Introduction to Industrial Internet of Things—IIoT 9.1.2 Challenges in IIoT 9.2 Security of IIoT 9.2.1 Security Issues in IIoT 9.2.2 Security Practices as Goals of IIoT 9.2.3 Possible Mechanism to Secure IIoT Communications 9.3 Identity-Defined Networking 9.3.1 Introduction to IDN 9.3.2 Expected Benefits of IDN 9.3.3 Challenges in IDN 9.4 Software-Defined VPLS (SoftVPLS) 9.4.1 Introduction to VPLS 9.4.2 Software-Defined VPLS (SoftVPLS) Architecture 9.4.3 Expected Benefits of SoftVPLS Architecture 9.4.4 Challenges in SoftVPLS 9.5 Discussion 9.6 Conclusions References 10 Reliable Control and Data Planes for Softwarized Networks 10.1 Introduction 10.2 Reliable Data Plane 10.2.1 Survivable Virtual Network Embedding for Content Connectivity 10.2.2 Programmable Data Planes for Resilient Software-Defined Networks 10.3 Reliable Control Plane 10.3.1 Resilient Controller Placement Strategies 10.3.2 Disaster-Resilient Control Plane Design 10.3.3 Securing the Control Channel of SDNs 10.4 Conclusions References 11 Emergency Networks for Post-Disaster Scenarios 11.1 Introduction 11.2 Post-Disaster Scenarios Characterization and Emerging Communication Requirements 11.2.1 Social Media for Disaster Communications 11.2.2 Situational Awareness 11.2.3 Complex Crises: Recovery and Reconstruction 11.2.4 Disruption of Vehicular Traffic 11.2.5 Management of Medical Emergencies 11.2.6 Post-Disaster Service and Communication Requirements 11.3 State of the Art on Post-Disaster Emergency Networks 11.4 Post-Disaster Emergency Networks 11.4.1 Floating Content Support to Disaster Relief and Situational Awareness 11.4.2 Information-Centric Networking and Delay-Tolerant Networking 11.4.3 Edge Computing Solutions for Post-Disaster Emergency Networks 11.4.4 Information Resilience Task Scheduling 11.4.5 Middleware Solutions for Emergency Networks 11.5 Conclusions References 12 Quality-Driven Schemes Enhancing Resilience of Wireless Networks under Weather Disruptions 12.1 Introduction 12.2 Background—Meaning and Position of Quality 12.2.1 Classification of Different Quality Aspects 12.2.2 Interrelation between Different Quality Aspects 12.3 Vulnerability of Wireless Systems to Different Environmental Conditions 12.3.1 Free-Space Optical Communication System 12.3.2 Wireless Sensor Networks 12.3.3 Modular Positioning System 12.4 Quality-Driven Techniques to Improve Resilience 12.4.1 Alert to React and Prevent Service Performance Degradation in FSO Communication 12.4.2 Rerouting Mechanism in WSN 12.4.3 Modification of Localization System 12.5 Conclusions References 13 Free Space Optics System Reliability in the Presence of Weather-Induced Disruptions 13.1 Introduction to FSO Communications 13.2 Weather Effects Influencing FSO Communications: Fog and Turbulence 13.2.1 Atmospheric Turbulence 13.2.2 Mie Scattering Effect Including Fog and Clouds 13.2.3 Availability of FSO Systems in Terms of Fog and Turbulence Atmospheric Conditions 13.3 Mitigation Techniques for Increasing FSO Communication Availability 13.4 Emerging FSO Communication Scenarios Applying Mitigation Techniques for Weather-Induced Disruptions 13.4.1 Deep Space FSO Communications Link Based on SNSPD Receiver Unit 13.4.2 Car-to-Car Communication Scenario 13.5 Conclusions References 14 Alert-Based Network Reconfiguration and Data Evacuation 14.1 Introduction to Alert-Based Reconfiguration Concepts 14.2 Alert-Based Data Evacuation for Large-Scale Disasters in Data Centre Networks 14.2.1 Motivation and Problem Statement 14.2.2 Methodology 14.2.3 Illustrative Numerical Examples 14.3 Alert-Based Virtual Machine Migration in Data Centre Networks 14.3.1 Motivation and Problem Statement 14.3.2 Methodology 14.3.3 Case Study and Numerical Results 14.4 Post-Disaster Data Evacuation from Isolated Data Centres Through Low Earth Orbit Satellite Networks 14.4.1 Motivation and Problem Statement 14.4.2 Methodology 14.4.3 Illustrative Numerical Example 14.5 Alert-Based Reconfiguration of Virtual Software-Defined Networks 14.5.1 Flexibility of Hypervisor Placement Approaches 14.6 Flexibility of Connection Recovery Approaches 14.6.1 Reactivity of Protection and Restoration Approaches 14.6.2 Adaptivity of Protection Structures to Failures 14.7 Conclusions References 15 Resilient Techniques Against Disruptions of Volatile Cloud Resources 15.1 Introduction 15.2 Volatile Cloud Resources 15.2.1 Google Preemptible Instances 15.2.2 Microsoft Low-Priority Instances 15.2.3 Amazon Spot Instances 15.3 Volatile Cloud Resources' Life Cycle and Their Performance Behaviour 15.3.1 Volatile Cloud Resources' Terminology 15.3.2 Cloud Volatile Resources' Life Cycle 15.4 Cloud Volatile Resource Disruptions 15.4.1 (Un)fulfilment of Volatile Cloud Resources 15.4.2 Considerable Waiting Time for Volatile Cloud Resources' Fulfilment 15.4.3 Cloud Volatile Resources Can Be Lost at Any Time 15.4.4 Publicly Available Information About Cloud Volatile Resources 15.5 Fault Tolerance Approaches for Volatile Cloud Resources 15.5.1 Checkpointing 15.5.2 Alternate Resource 15.5.3 Task Retry 15.5.4 Task and Data Replication 15.6 Resilient Techniques to Mitigate the Risk and to Overcome Disruptions of Volatile Cloud Resources 15.6.1 Reactive Resilient Techniques for Time-Insensitive Applications 15.6.2 Bidding Strategies to Alleviate Disruptions of Volatile Cloud Resources (Low-Bid-Price) 15.6.3 Resilient Techniques that Use Checkpointing 15.6.4 Hybrid Resilience Techniques 15.7 Tools to Simulate the Behaviour of Volatile Cloud Resources 15.8 Conclusions References 16 Structural Methods to Improve the Robustness of Anycast Communications to Large-Scale Failures 16.1 Introduction 16.2 Robustness of Anycast Services to Natural Disasters 16.3 SDN Robustness to Malicious Node Attacks 16.3.1 Enumeration of CPP Solutions 16.3.2 Evaluation of CPP Solutions 16.4 Robustness of CDNs to Malicious Link Cut Attacks 16.4.1 CDN Robustness Evaluation to Link Cut Attacks 16.4.2 CDN Upgrade Methods 16.4.3 CDN Replica Placement Method 16.5 Conclusions References Part III Algorithms and Schemes for Resilient Systems 17 Fundamental Schemes to Determine Disjoint Paths for Multiple Failure Scenarios 17.1 Introduction 17.2 Algorithms for Disjoint Routing 17.3 SRLG-Disjoint Routing 17.4 Shortest Path Algorithms 17.4.1 Dijkstra's Algorithm 17.4.2 Modified Dijkstra's Algorithm 17.5 Suurballe's and Bhandari's Algorithm 17.5.1 Suurballe's Algorithm 17.5.2 Bhandari's Algorithm 17.5.3 k-Bhandari's Algorithm 17.6 Establishing a Set of k Disjoint Paths for a Multi-Cost Network Scenario 17.7 Minimum-Cost Path Pairs with Common Arcs and Nodes 17.7.1 Tunable Availability-Aware Routing 17.7.2 Min-Cost Arc-Disjoint Path Pairs with Common Nodes 17.8 Conclusions References 18 Taxonomy of Schemes for Resilient Routing 18.1 Introduction 18.2 Taxonomy of Schemes of Resource Reservation for Resilient Routing 18.3 Resilient Routing Schemes for IP Networks 18.3.1 IP Fast ReRoute Framework (IPFRR) 18.3.2 Multi-Path Routing (MPR) 18.3.3 Other Schemes 18.4 Resilience of Multi-Domain Networks 18.5 Resilience of Multi-Layer Networks 18.6 Conclusions References 19 Disaster-Resilient Routing Schemes for Regional Failures 19.1 An Introduction to Geographically Diverse Routing 19.2 Disaster-Risk Aware Schemes of Provisioning of Communication Paths 19.3 Schemes of Risk-Aware Reprovisioning of Connections 19.4 Geodiverse Routing in Optical Networks 19.4.1 Notation 19.4.2 Minimum-Cost Geodiverse Routing 19.4.3 Geodiverse Routing with Availability Constraints 19.4.4 On the Complexity of Finding D-Geodiverse Paths 19.4.5 SRLG-Disjoint and Geodiverse Routing—Some Considerations on Benefit and Practical Effort 19.5 Conclusions References 20 Resilient SDN-Based Routing Against Rain Disruptions for Wireless Networks 20.1 Impact of Rain on Wireless Networks 20.2 Mitigation of the Rain Impact 20.2.1 Detection of Rain Events 20.2.2 Distributed Routing Approaches 20.2.3 Centralized Routing Approaches 20.3 Software-Defined Networking (SDN)-Based Routing 20.3.1 Cost of Adaptation 20.3.2 Optimization Model for Computing the Adaptation Cost 20.3.3 Total Data Loss Minimization 20.4 Numerical Results 20.5 Conclusions References 21 Optimization of Wireless Networks for Resilience to Adverse Weather Conditions 21.1 Introduction 21.2 Modelling Weather Conditions and Their Impact on Link Capacity 21.2.1 Weather States and Link States 21.2.2 Modelling of FSO Links 21.2.3 Modelling of Radio Links 21.3 Characteristics of Paris Metropolitan Area Network (PMAN) 21.4 Robust Optimization of FSO Networks 21.4.1 Notation 21.4.2 Optimization Problem for FT 21.4.3 Optimization Problem for the Affine Version of FT 21.4.4 An Alternative for Weather Condition Modelling 21.4.5 Solution Algorithm of AFTOP for a Given State Polytope 21.4.6 Comments 21.5 Robust Optimization of WMN 21.5.1 Basic Optimization Model with Controlled MCS 21.5.2 Solution Algorithm 21.6 Numerical Studies of Paris Metropolitan Area Network 21.6.1 Numerical Results for FSO 21.6.2 Numerical Results for WMN 21.7 Conclusions References 22 Enhancing Availability for Critical Services 22.1 The Spine Concept as an Approach to Increase Critical Services Resilience to Disasters 22.2 Enhancing End-to-End Service Availability with the General Dedicated Protection and Spine 22.2.1 Motivation 22.2.2 FRADIR—Disaster-Resilient Transport Networks 22.2.3 The Effectiveness of FRADIR 22.3 Network Upgrade for Geodiverse Routing with Availability Constraints 22.3.1 Additional Notation 22.3.2 A Heuristic Approach 22.3.3 Selecting the Edge to Upgrade 22.3.4 Computational Results 22.4 Exploring the Spine Concept in Disaster-Prone Areas 22.4.1 Problem Definition 22.4.2 The Weighted Euclidean Shortest Path Problem 22.4.3 The Weighted Euclidean Shortest Tree Between Three Terminal Nodes 22.4.4 Euclidean Steiner Tree Heuristic 22.4.5 Experimental Results 22.5 Conclusions References 23 Detection of Attacks and Attack-Survivable Routing in Carrier Networks 23.1 Introduction 23.2 Security Diagnostics and Situational Awareness Capabilities of Optical Networks 23.2.1 Impairments/Attacks and Sensing/Localization Techniques 23.2.2 Active Network Probing and Enforcement 23.2.3 Wavelength Reconfiguration with Cognitive Detection of Congestion or Failure 23.2.4 Cognitive Network State Sensing 23.3 Attack Syndromes and Security Monitoring Probe Design 23.3.1 Connection Routing to Boost Security Diagnostic Capabilities 23.4 Attack-Aware Dedicated Path Protection 23.5 Conclusions References 24 Routing in Post-Disaster Scenarios 24.1 Introduction 24.2 Resilient Event Notification 24.2.1 Fault Model 24.2.2 Literature on Fault-Tolerance in Event Notification 24.2.3 Novel Approaches 24.3 Resilient Unicast Communications 24.3.1 Spatial Redundancy via Floating Breadcrumbs 24.3.2 Natural Disaster Management System Based on Location-Aware Distributed Sensor Networks 24.3.3 Analysing Path Geodiversity and Improving Routing Performance in Optical Networks 24.3.4 Capacity Constrained Routing Algorithm for Evacuation Planning 24.3.5 Weather Disruption-Tolerant Self-Optimizing Millimetre Mesh Networks 24.4 UAV Support to Network Resilience 24.5 User Association in Emergency Networks 24.6 Conclusions References Part IV Advanced Topics in Resilient Communication Systems 25 Resilient SDN, CDN and ICN Technology and Solutions 25.1 Risk-Based Management of Security in SDNs 25.1.1 Challenges to Security Introduced by SDN 25.1.2 Security Enhancements Using SDN 25.1.3 Attack Methods and Mitigation Techniques 25.2 Protection in Content Delivery Networks (CDNs) 25.2.1 Protection of Origin Server 25.2.2 How to Improve CDN Reliability? 25.3 Information-Centric Networking 25.3.1 Resilience in Information-Centric Networking 25.3.2 Resilience in Service-Centric Networking 25.3.3 Security in Information- and Service-Centric Networking 25.4 Multipath and Route Monitoring for Protecting Internet Communication 25.4.1 Monitoring Communication Paths 25.4.2 Multipath over the Internet 25.4.3 Path Selection Strategies 25.5 Conclusions References 26 Scalable and Collaborative Intrusion Detection and Prevention Systems Based on SDN and NFV 26.1 Introduction 26.2 Background—CIDS Architectures 26.3 Review of Scalable and Collaborative IDSs 26.3.1 Early CIDS Concepts 26.3.2 Cloud-Based CIDS 26.4 Comparison of SDNFV-Based IDPS 26.4.1 SDNFV-Based IDPS 26.4.2 SDN-Based Distributed Attack Notification 26.5 Scalable and Collaborative IDPS Leveraging SDNFV—A Proposal 26.5.1 Programmable Network Monitoring Techniques 26.5.2 Scalable and Collaborative SDNFV-Based IDPS Model 26.6 Conclusions References 27 Resilient NFV Technology and Solutions 27.1 An Overview of the ETSI NFV Architecture Framework 27.2 Dependability of NFV—Two Related Perspectives 27.3 Dependability of Network Services 27.3.1 Redundancy and Synchronization 27.3.2 Failure Detection and Monitoring 27.3.3 Interoperability of System Components 27.3.4 Service Chains and VNF Placement Strategies 27.4 NFV in Action 27.4.1 Cloud Application Architectures 27.4.2 VNF Use Cases 27.5 NFV Resilience Against Disasters 27.5.1 Zero-Touch Management 27.5.2 VNF Placement, Service Chaining, Redundancy 27.6 Conclusions References 28 Resilience of 5G Mobile Communication Systems to Massive Disruptions 28.1 Challenges to Resilience of 5G Systems 28.2 Dependability Assessment of 5G Networks 28.3 Frequency Fallback Under Atmospheric Disruptions 28.4 Backhaul Segment Interleaving 28.5 Multi-Operator Protection 28.6 Power-Aware Load Balancing for Energy Efficiency and Survivability 28.7 Conclusions References 29 Design of Resilient Vehicle-to-Infrastructure Systems 29.1 Introduction 29.2 Challenges to Resilient Communications 29.3 Planning the Roadside Infrastructure for Reliable Vehicular Communications 29.3.1 Deployment of Gateways to Minimize the Average Hop Count for Internet-Related Traffic 29.3.2 Deployment of RSUs Based on Road Traffic Intensity 29.3.3 Determination of RSU Location Based on Vehicle Contact Time and Contact Probability 29.3.4 Deployment of RSUs in Tunnels Based on Outage Probability 29.4 Improving the Reliability of V2I Links 29.5 Security of VANET Communications 29.6 Conclusions References 30 Reliability Models for Multi-Objective Design Problems 30.1 Introduction 30.2 Model: Description and Properties 30.2.1 Model Description 30.2.2 Model Properties 30.2.3 Mathematical Programming Model 30.2.4 Example: Location–Allocation–Routing Model 30.3 Reliable Location–Allocation–Routing Model(s) 30.3.1 Overview 30.3.2 Demand Protection Schemes 30.4 Case Study 30.4.1 Instances and Input Data 30.4.2 Programming and Execution Environment 30.4.3 Protection Versus Re-Routing 30.5 Conclusions References 31 Analyzing Disaster-Induced Cascading Effects in Hybrid Critical Infrastructures: A Practical Approach 31.1 Introduction 31.2 Problem Description and Related Work 31.3 Threat Propagation Between Cyber and Physical Domains 31.3.1 Terminology 31.3.2 Attack Scenario 31.4 Dependency Model Amongst Assets 31.4.1 Identification of Relevant Assets 31.4.2 Classification of Assets 31.4.3 Identification of Dependencies 31.5 Dynamics Inside Assets 31.5.1 Possible States 31.5.2 Possible Alarms 31.5.3 Transition Regime 31.5.4 Forwarded Information 31.5.5 Simulation 31.6 Results of Analysis 31.6.1 Statistical Analysis 31.6.2 Visualization 31.7 Considerations for Computer Networks and Large-Scale Disasters 31.8 Conclusions References 32 Human and Organizational Issues for Resilient Communications 32.1 Introduction 32.2 Ethnographic Research 32.3 Research Findings 32.4 Analysis of Ethnographic and Interview Data: The `Mental Models' Used in Reasoning About Risk 32.5 Conclusions References Appendix Summary of the Book References Index