دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ernest Moshe Loebl
سری:
ISBN (شابک) : 9780124551527, 0124551521
ناشر: Elsevier Inc, Academic Press Inc
سال نشر: 1971
تعداد صفحات: 316
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Group Theory and its Applications. Volume II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه گروه و کاربردهای آن جلد دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contributors Group Theory and Its Applications, VOLUME II COPYRIGHT (C) 1971, BY ACADEMIC PRESS LCCN 67023166 Contents List of Contributors Preface Contents of Volume I The Representations and Tensor Operators of the Unitary Groups U(n) I. Introduction: The Connection between the Representation Theory of S(n) and That of U(n), and Other Preliminaries II. The Group SU(2) and Its Representations Ill. The Matrix Elements for the Generators of U(n) IV. Tensor Operators and Wigner Coefficients on the Unitary Groups REFERENCES Symmetry and Degeneracy I. Introduction II. Symmetry of the Hydrogen Atom Ill. Symmetry of the Harmonic Oscillator IV. Symmetry of Tops and Rotators V. Bertrand's Theorem VI. Non-Bertrandian Systems VII. Cyclotron Motion VIII. The Magnetic Monopole IX Two Coulomb Centers X. Relativistic Systems Xl. Zitterbewegung XII. Dirac Equation for the Hydrogen Atom XIII. Other Possible Systems and Symmetries XIV. Universal Symmetry Groups XV. Summary Acknowledgments REFERENCES Dynamical Groups in Atomic and Molecular Physics I. Introduction II. The Second Vector Constant of Motion in Kepler Systems Ill. The Four-Dimensional Orthogonal Group and the Hydrogen Atom IV. Generalization of Fock's Equation: 0(5) as a Dynamical Noninvariance Group V. Symmetry Breaking in Helium VI. Symmetry Breaking in First-Row Atoms VII. The Conformal Group and One-Electron Systems VIII. Conclusion Acknowledgments REFERENCES Symmetry Adaptation of Physical States by Means of Computers I. Introduction II. Constants of Motion and the Unitary Group of the Hamiltonian III. Separation of Hilbert Space with Respect to the Constants of Motion IV. Dixon's Method for Computing Irreducible Characters V. Computation of Irreducible Matrix Representatives VI. Group Theory and Computers REFERENCES Galilel Group and Galilean Invariance I. Introduction A. HISTORICAL BACKGROUND AND MOTIVATIONS B. CONTENTS II. The Galilei Group and Its Lie Algebra A. DEFINITION AND SPACE-TIME PROPERTIES 1. Definition and Invariants 2. Generalizations and Relations B. STRUCTURE OF THE GALILEI GROUP AND ITS SUBGROUPS 1. The Group Law 2. Subgroups 3. Homogeneous Spaces 4. Connectivity Properties C. THE GALILEI LIE ALGEBRA D. DISCRETE TRANSFORMATIONS AND AUTOMORPHISMS III. The Extended Galilei Group and Lie Algebra A. EXTENSIONS OF GROUPS AND LIE ALGEBRAS 1. Extensions of Groups 2. Extensions of Lie Algebras 3. Examples B. THE EXTENDED GALILEI LIE ALGEBRA C. THE EXTENDED GALILEI GROUP IV. Representations of the Gal i lei Groups A. UNITARY REPRESENTATIONS OF SEMIDIRECT PRODUCTS 1. Induced Representations 2. Example: The Two-Dimensional Eculidean Group d12) B. UNITARY REPRESENTATIONS OF THE GALILEI GROUP 1. Representations of the Group 2. Representations of the Lie Algebra C. UNITARY REPRESENTATIONS OF THE EXTENDED GALILEI GROUP D. PROJECTIVE REPRESENTATIONS OF THE GALILEI GROUP* E. NONUNITARY REPRESENTATIONS OF THE GALILEI GROUP V. Applications to Classical Physics A. FOUNDATIONS OF CLASSICAL MECHANICS: FREE PARTICLES 1. Lagrangian Formalism 2. Conservation Laws 3. Hamiltonian Formalism B. FOUNDATIONS OF CLASSICAL MECHANICS: INTERACTING PARTICLES 1. External Forces 2. Mutually Interacting Particles C. GALILEAN ELECTROMAGNETISM AND FIELD THEORIES 1. Formalism 2. Physical Discussion VI. Applications to Quantum Physics A. LoCALIZABILITY AND PHYSICAL PARTICLES 1. Position Operator and Representations of G 2. Physical Representation in a Configuration Space 3. Zero-Mass "Particles" and the Nonrelativistic Limit B. KINEMATICS OF MANY-PARTICLE SYSTEMS 1. The Role of Mass and Internal Energy: Compound Systems 2. Decomposition of the Tensor Product of Two Physical Representations* 3. Clebsch-Gordan Coefficients and Partial- Wave Analysis C. WAVE EQUATIONS 1. Galilean Invariance and External Forces 2. Wave Equations for Nonzero Spin D. QUANTUM FIELD THEORIES AND PARTICLES PHYSICS 1 . Galilean Quantum Field Theory and Many-Body Problems 2. Internal and Space-Time Symmetries REFERENCES Author Index Subject Index