دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تقارن و گروه ویرایش: First نویسندگان: Ernest M. Loebl سری: ISBN (شابک) : 0124551505, 9780124551503 ناشر: Academic Press سال نشر: 1968 تعداد صفحات: 362 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
کلمات کلیدی مربوط به کتاب نظریه گروه و کاربردهای آن: ریاضیات، جبر عمومی، نظریه گروه
در صورت تبدیل فایل کتاب Group Theory and Its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه گروه و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contributors Group Theory and Its Applications COPYRIGHT © 1968, BY ACADEMIC PRESS LCC 67023166 Dedication List of Contributors Preface Contents Glossary of Symbols and Abbreviations The Algebras of Lie Groups and Their Representations I. Introduction II. Preliminary Survey III. Lie's Theorem, the Rank Theorem, and the First Criterion of Solvability IV. The Cartan Subalgebra and Root Systems V. The Classification of Semisimple Lie Algebras in Terms of Their Root Systems VI. Representations and Weights for Semisimple Lie Algebras REFERENCES Induced and Subduced Representations I. Introduction II. Group, Topological, Borel, and Quotient Structures Ill. The Generalized Schur Lemma and Type I Representations IV. Direct Integrals of Representations V. Murray-von Neumann Typology VI. Induced Representations of Finite Groups VII. Orthogonality Relations for Square-I ntegrable Representations VIII. Functions of Positive Type and Compact Groups IX. Inducing for Locally Compact Groups X. Applications A. GALILEI AND POINCARE GROUPS 1. Rigid Motions in Euclidean n Space, E 2. Extended Poincare Group 3. Galilei Group B. PRODUCTS OF REPRESENTATIONS AND BRANCHING LAWS 1. The Poincare Group 2. Representations of SN C. IRREDUCIBLE REPRESENTATIONS OF COMPACT LIE GROUPS D. SPACE GROUPS E. EXAMPLES OF TYPE II REPRESENTATIONS F. MAGNETIC TRANSLATION GROUP G. REPRESENTATIONS OF NONCOMPACT LIE GROUPS REFERENCES On a Generalization of Euler's Angles I. Origin of the Problem II. Summary of Results III. Proof IV. Corollary REFERENCES Projective Representation of the Poincare Group in a Quaternionic Hilbert Space I. Introduction A. RELATIVISTIC QUANTUM MECHANICS B. GENERAL QUANTUM MECHANICS C. INTERVENTION OF GROUP THEORY II. The Lattice Structure of General Quantum Mechanics A. THE PROPOSITION SYSTEM 1. The Elementary Propositions (Yes-No Experiments) 2. The Partial Ordering of Propositions 3. Intersection, Union, and Orthocomplement of Proposition 4. The States of a Physical System B. DISTRIBUTIVITY, MODULARITY, AND ATOMIC'ITY 1. Distributirity 2. Modularity and Weak Modularity 3. Atomicity C. SUPERPOSITION PRINCIPLE AND SUPERSELECTION RULES 1. Reducible and Irreducible Lattices 2. The Superposition Principle III. The Group of Automorphisms in a Proposition System A. MORPHISMS 1. Definition of Morphisms 2. Various Invariance Properties 3. A utomorphisms B. THE SYMMETRY GROUP OF A PROPOSITION SYSTEM 1. Topology in a Group of Automorphisms 2. The Connected Component and Superselection Rules 3. Representations of Symmetry Groups C. IRREDUCIBLE PROPOSITION SYSTEMS AS SUBSPACES OF A HILBERT SPACE 1. Proposition Systems and Projective Geometries 2. The Representation Theorem for Proposition Systems D. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS 1. The Semilinear Transformations 2. A utomorphisms of Subspaces 3. Wigner's Theorem 4. Unitary Projective Representations of Symmetry Groups IV. Projective Representation of the Poincare Group in Quaternionic Hilbert Space A. QUATERNIONIC HILBERT SPACE 1. Quaternions 2. Elementary Properties of Quaternionic Hilbert Space 3. Linear and Semilinear Operators 4. Ray Transformations B. PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS IN QUATERNIONIC HILBERT SPACE 1. Local Lifting of Factors 2. Global Lifting of Factors 3. Schur's Lemma and Its Corollary 4. The Symplectic Decomposition of D 5. Restriction and Extension of Representations 6. Representation of Abelian Groups C. REPRESENTATION THEORY OF THE POINCARE GROUP 1. The Poincare Group 2. Physical Heuristics 3. The Physical Representations of the Connected Component 4. Induced Representations (Discrete Case) 5. Induced Representations (Continuous Case) 6. Semidirect Products V. Conclusion REFERENCES Group Theory in Atomic Spectroscopy I. Introduction II. Shell Structure A. ROOT FIGURES B. ANNIHILATION AND CREATION OPERATORS C. REPRESENTATIONS D. SUBGROUPS E. UNITARY GROUPS III. Coupled Tensors A. THE GROUP O+(3) B. COMMUTATORS C. SUBGROUPS OF U(41 + 2) D. THE CONFIGURATIONS f^N IV. Representations A. BRANCHING RULES B. SENIORITY C. ALTERNATIVE DECOMPOSITIONS D. INNER KRONECKER PRODUCTS V. The Wigner-Eckart Theorem A. MATRIX ELEMENTS B. SINGLE-PARTICLE OPERATORS C. EXAMPLES D. QUASISPIN E. THE COULOMB INTERACTION VI. Conclusion REFERENCES Group Lattices and Homomorphisms I. Introduction II. Groups A. DEFINITIONS AND NOTATION B. LATTICES OF SUBGROUPS C. DIRECT PRODUCT GROUPS D. THE LATTICE OF A HAMILTONIAN III. Symmetry Adaptation of Vector Spaces A. INTRODUCTION B. THE EIGENVECTOR PROBLEM; PERTURBATION THEORY C. SYMMETRY ADAPTATION OF PRODUCT SPACES IV. The Lattice of the Quasi-Relativistic Dirac Hamiltonian A. THE DIRAC HAMILTONIAN B. THE FOLDY-WOUTHUYSEN TRANSFORMATION C. THE LATTICE OF THE QUASI-RELATIVISTIC DIRAC HAMILTONIAN D. APPENDIX: DOUBLE GROUP MATRICES V. Applications A. AN ELECTRON IN A CENTRAL FIELD B. N ELECTRONS IN A CENTRAL FIELD C. AN ELECTRON IN A NONCENTRAL FIELD D. NUCLEAR STATES Acknowledgments REFERENCES Group Theory in Solid State Physics I. Introduction II. Stationary States in the Quantum Theory of Matter A. GASEOUS STATES B. FLUID AND SOLID STATES C. THE ROLE OF SYMMETRY III. The Group of the Ham i lton ian A. REPRESENTATION THEORY B. IRREDUCIBLE SUBSPACES C. EXPECTATION VALUES D. TRANSITION PROBABILITIES AND SELECTION RULES E. PROJECTION OPERATORS F. REDUCTION OF BASIS SETS IV. Symmetry Groups of Solids A. THE GROUP OF PRIMITIVE TRANSLATIONS B. POINT GROUPS C. SYMMORPHIC CRYSTALLOGRAPHIC GROUPS D. NONSYMMORPHIC CRYSTALLOGRAPHIC GROUPS E. DOUBLE SPACE GROUPS F. TIME-REVERSAL SYMMETRY G. MAGNETIC GROUPS H. PERMUTATION SYMMETRY FOR PARTICLES IN SOLIDS V. Lattice Vibrations in Solids A. CLASSICAL TREATMENT 1. One Atom per Unit Cell 2. Translational Symmetry 3. The Case of Several Atoms per Unit Cell B. QUANTUM-MECHANICAL TREATMENT C. BOSE STATISTICS V1. Band Theory of Solids A. FERMI STATISTICS B. THE HARTREE-FOCK EQUATIONS C. BRILLOUIN ZONES D. DEGENERACY IN k SPACE E. THE PLANE WAVE (PW) METHOD F. THE ORTHOGONALIZED PLANE WAVE (OPW) METHOD G. THE AUGMENTED PLANE WAVE (APW) AND RELATED METHODS H. THE TIGHT-BINDING METHOD 1. SYMMETRY PROPERTIES OF THE IRREDUCIBLE CRYSTAL HAMILTONIAN VII. Electromagnetic Fields in Solids A. WAN N IER STATES B. QUASI-CLASSICAL BAND MECHANICS C. BAND ELECTRONS IN ELECTRIC FIELDS D. BAND ELECTRONS IN MAGNETIC FIELDS REFERENCES Group Theory of Harmonic Oscillators and Nuclear Structure I. Introduction and Summary II. The Symmetry Group U(3n); the Subgroup QI(3) X U(n); Gelfand States A. THE HARMONIC OSCILLATOR HAMILTONIAN AND ITS UNITARY SYMMETRY GROUPS B. n-PARTICLE STATES AS BASES FOR IRREDUCIBLE REPRESENTATIONS OF THE GROUPS U(3n) QI(3) X U(n) 1. State of Highest Weight 2. Lowering Operators 3. The Physical Chain of Groups £ (3) (91(3):D6+(2) C. APPENDIX: GENERATORS OF THE UNITARY GROUP IN r DIMENSIONS III. The Central Problem: Permutational Symmetry of theOrbital States A. SHELL MODEL STATES IN THE X U (n) SCHEME 1. Three-Particle Shell Model States in the ?(3) X U(n) Scheme 2. Irreducible Representations of the Groups K(3) and K(n) 3. Irreducible Representations of K(3) Contained in an Irreducible Representation of U(3) 4. Construction of Three-Particle Shell Model States 5. n-Particle Shell Model States B. TRANSLATIONAL-INVARIANT STATES 1. The Chain U(n) U (n - 1) O(n - 1) S (n) 2. Translational-Invariant Four-Particle States IV. Orbital Fractional Parentage Coefficients A. ONE-PARTICLE FRACTIONAL PARENTAGE COEFFICIENTS B. TWO-PARTICLE FRACTIONAL PARENTAGE COEFFICIENTS C. PAIR FRACTIONAL PARENTAGE COEFFICIENTS D. FRACTIONAL PARENTAGE COEFFICIENTS FOR THREE-PARTICLE SHELL MODEL STATES F. ONE-Row WIGNER COEFFICENTS OF QI(3) V. Group Theory and n-Particle States in Spin-Isospin Space A. SPIN-ISOSPIN STATES WITH PERMUTATIONAL SYMMETRY B. BASES FOR IRREDUCIBLE REPRESENTATIONS OF THE U(4n) GROUP IN THE QIl(4) X U(n) CHAIN C. STATES WITH DEFINITE TOTAL SPIN AND ISOSPIN D. THE SPECIAL GELFAND STATES AS BASES FOR IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP VI. Spin-Isospin Fractional Parentage Coefficients A. EQUIVALENCE OF THE FRACTIONAL PARENTAGE COEFFICIENTS AND THE WIGNER COEFFICIENTS OF QI(4) B. ONE-BLOCK WIGNER COEFFICIENTS OF U(n) IN THE CANONICAL CHAIN C. THE ONE-PARTICLE SPIN-ISOSPIN FRACTIONAL PARENTAGE COEFFICIENTS D. THE TWO-PARTICLE SPIN-ISOSPIN FRACTIONAL PARENTAGE COEFFICIENTS VII. Evaluation of Matrix Elements of One-Body and Two-Body Operators A. ONE-BODY AND TWO-BODY OPERATORS B. GENERAL PROCEDURE FOR DERIVING MATRIX ELEMENTS OF ONE-BODY AND TWO-BODY OPERATORS 1. One-Body Operators in Shell Model States 2. Matrix Elements of Two-Body Interactions C. MATRIX ELEMENTS FOR THREE-PARTICLE AND FOUR-PARTICLE STATES 1. Matrix Elements of One-Body and Two-Body Operators for Three-Particle Shell Model States 2. Matrix Elements of Two-Body Interactions for Translational-Invariant Four-Particle States VIII. The Few-Nucleon Problem A. THE INTRINSIC HAMILTONIAN B. THE FOUR-NUCLEON PROBLEM IX. The El l iott Model in Nuclear Shell Theory A. THE ELLIOTT MODEL FOR A SINGLE SHELL B. EXTENSION OF THE ELLIOTT MODEL TO MULTISHELL CONFIGURATIONS C. THE QUADRUPOLE-QUADRUPOLE INTERACTION D. SINGLE-SHELL APPLICATIONS X. Clustering Properties and Interactions A. DEFINITION OF CLUSTERING; STATES OF MAXIMUM CLUSTERING B. PERMUTATIONAL LIMITS ON CLUSTERING; WHEELER OPERATORS C. CLUSTERING OF FOUR-PARTICLE STATES; WILDERMUTH STATES D. CLUSTERING INTERACTION E. QUADRUPOLE-QUADRUPOLE INTERACTION AND CLUSTERING INTERACTION IN THE l S- lp SHELL F. APPENDIX: EIGENVALUES OF WHEELER OPERATORS Acknowledgments REFERENCES Broken Symmetry I. Introduction II. Wigner-Eckart Theorem Ill. Some Relevant Group Theory IV. Particle Physics SU(3) from the Point of View of the Wigner-Eckart Theorem V. Foils to SU(3) and the Eightfold Way VI. Broken Symmetry in Nuclear and Atomic Physics VII. General Questions concerning Broken Symmetry VIII. A Note on SU(6) Acknowledgments REFERENCES Broken SU(3) as a Particle Symmetry I. Introduction II. Perturbative Approach III. Algebra of SU(3) IV. Representations A. WEIGHTS AND LABELING OF BASES B. ACTION OF GENERATORS ON BASES C. MULTIPLICITIES AND DIRECT PRODUCT DECOMPOSITION V. Tensor and Wigner Operators VI. Particle Classification, Masses, and Form Factors A. THE BARYON STATES B /2+ B. THE BARYON STATES 8312+ C. THE BARYON STATES B!,(1405) AND B D. THE MESON STATES Mp E. THE MESON STATES M F. THE MESON STATES M2+ VII. Some Remarks on R and SU(3)/Z3 VIII. Couplings and Decay Widths A. BARYON DECAYS B. BOSON DECAYS IX. Weak Interactions A. SEMILEPTONIC DECAYS B. NONLEPTONIC DECAYS X. Appendix Acknowledgments REFERENCES De Sitter Space and Positive Energy I. Introduction and Summary II. Ambivalent Nature of the Classes of de Sitter Groups Ill. The Infinitesimal Elements of Unitary Representations of the de Sitter Group IV. Finite Elements of the Unitary Representations of Section III V. Spatial and Time Reflections VI. The Position Operators VII. General Remarks about Contraction of Groups and Their Representations VIII. Contraction of the Representations of the 2 + I de Sitter Group Acknowledgment REFERENCES Author Index Subject Index Back Cover