دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Morton Hamermesh
سری:
ناشر: Addison-Wesley
سال نشر: 1962
تعداد صفحات: [521]
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Group Theory and its Application to Physical Problem به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه گروه و کاربرد آن در مسائل فیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title page INTRODUCTION CHAPTER 1. ELEMENTS OF GROUP THEORY 1-1 Correspondences and transformations 1-2 Groups. Definitions and examples 1-3 Subgroups. Cayley's theorem 1-4 Cosets. Lagrange's theorem 1-5 Conjugate classes 1-6 Invariant subgroups. Factor groups. Homomorphism 1-7 Direct products CHAPTER 2. SYMMETRY GROUPS 2-1 Symmetry elements. Pole figures 2-2 Equivalent axes and planes. Two-sided axes 2-3 Groups whose elements are pure rotations: uniaxial groups, dihedral groups 2-4 The law of rational indices 2-5 Groups whose elements are pure rotations. Regular polyhedra 2-6 Symmetry groups containing rotation reflections. Adjunction of reflections to C_n 2-7 Adjunction of reflections to the groups D_n 2-8 The complete symmetry groups of the regular polyhedra 2-9 Summary of point groups. Other systems of notation 2-10 Magnetic symmetry groups (color groups) CHAPTER 3. GROUP REPRESENTATIONS 3-1 Linear vector spaces 3-2 Linear dependence; dimensionality 3-3 Basis vectors (coordinate axes); coordinates 3-4 Mappings; linear operators; matrix representations; equivalence 3-5 Group representations 3-6 Equivalent representations; characters 3-7 Construction of representations. Addition of representations 3-8 Invariance of functions and operators. Classification of eigenfunctions 3-9 Unitary spaces; scalar product; unitary matrices; Hermitian matrices 3-10 Operators: adjoint, self-adjoint, unitary 3-11 Unitary representations 3-12 Hilbert space 3-13 Analysis of representations; reducibility; irreducible representations 3-14 Schur's lemmas 3-15 The orthogonality relations 3-16 Criteria for irreducibility. Analysis of representations 3-17 The general theorems. Group algebra 3-18 Expansion of functions in basis functions of irreducible representations 3-19 Representations of direct products CHAPTER 4. IRREDUCIBLE REPRESENTATIONS OF THE POINT SYMMETRY GROUPS 4-1 Abelian groups 4-2 Nonabelian groups 4-3 Character tables for the crystal point groups CHAPTER 5. MISCELLANEOUS OPERATIONS WITH GROUP REPRESENTATIONS 5-1 Product representations (Kronecker products) 5-2 Symmetrized and antisymmetrized products 5-3 The adjoint representation. The complex conjugate representation 5-4 Conditions for existence of invariants 5-5 Real representations 5-6 The reduction of Kronecker products. The Clebsch-Gordan series 5-7 Clebsch-Gordan coefficients 5-8 Simply reducible groups 5-9 Three-j symbols CHAPTER 6. PHYSICAL APPLICATIONS 6-1 Classification of spectral terms 6-2 Perturbation theory 6-3 Selection rules 6-4 Coupled systems CHAPTER 7. THE SYMMETRIC GROUP 7-1 The deduction of the characters of a group from those of a subgroup 7-2 Frobenius' formula for the characters of the symmetric group 7-3 Graphical methods. Lattice permutations. Young patterns. Young tableaux 7-4 Graphical method for determining characters 7-5 Recursion formulas for characters. Branching laws 7-6 Calculation of characters by means of the Frobenius formula 7-7 The matrices of the irreducible representations of S_n. Yamanouchi symbols 7-8 Hund's method 7-9 Group algebra 7-10 Young operators 7-11 The construction of product wave functions of a given symmetry. Fock's cyclic symmetry conditions 7-12 Outer products of representations of the symmetric group 7-13 Inner products. Clebsch-Gordan series for the symmetric group 7-14 Clebsch-Gordan (CG) coefficients for the symmetric groupe. Symmetry properties. Recursion formulas CHAPTER 8. CONTINUOUS GROUPS 8-1 Summary of results for finite groups 8-2 Infinite discrete groups 8-3 Continuous groups. Lie groups 8-4 Examples of Lie groups 8-5 Isomorphism. Subgroups. Mixed continuous groups 8-6 One-parameter groups. Infinitesimal transformations 8-7 Structure constants 8-8 Lie algebras 8-9 Structure of Lie algebras 8-10 Structure of compact semisimple Lie groups and their algebras 8-11 Linear representations of Lie groups 8-12 Invariant integration 8-13 Irreducible representations of Lie groups and Lie algebras. The Casimir operator 8-14 Multiple-valued representations. Universal covering group CHAPTER 9. AXIAL AND SPHERICAL SYMMETRY 9-1 The rotation group in two dimensions 9-2 The rotation group in three dimensions 9-3 Continuous single-valued representations of the three-dimensional rotation group 9-4 Splitting of atomic levels in crystalline fields (single-valued representations) 9-5 Construction of crystal eigenfunctions 9-6 Two-valued representations of the rotation groupe The unitary unimodular group in two dimensions 9-7 Splitting of atomic levels in crystalline fields. Double-valued representations of the crystal point groups 9-8 Coupled systems. Addition of angular momenta. Clebsch-Gordan coefficients CHAPTER 10. LINEAR GROUPS lN n-DIMENSIONAL SPACE. IRREDUCIBLE TENSORS 10-1 Tensors with respect to GL(n) 10-2 The construction of irreducible tensors with respect to GL(n) 10-3 The dimensionality of the irreducible representations of GL(n) 10-4 Irreducible representations of subgroups of GL(n): SL(n), U(n), SU(n) 10-5 The orthogonal group in n dimensions. Contraction. Traceless tensors 10-6 The irreducible representations of O(n) 10-7 Decomposition of irreducible representations of U(n) with respect to 0^+(n) 10-8 The symplectic group Sp(n). Contraction. Traceless Tensors 10-9 The irreducible representations of Sp(n). Decomposition of irreducible representations of U(n) with respect to its symplectic subgroup CHAPTER 11. APPLICATIONS TO ATOMIC AND NUCLEAR PROBLEMS 11-1 The classification of states of systems of identical particles according to SU(n) 11-2 Angular momentum analysis. Decomposition of representations of SU(n) into representations of 0^+(3) 11-3 The Pauli principle. Atomic spectra in Russell-Saunders coupling 11-4 Seniority in atomic spectra 11-5 Atomic spectra in jj-coupling 11-6 Nuclear structure. lsotopic spin 11-7 Nuclear spectra in L-S coupling. Supermultiplets 11-8 The L-S coupling shell model. Seniority 11-9 The jj-coupling shell model. Seniority in jj-coupling CHAPTER 12. RAY REPRESENTATIONS. LITTLE GROUPS 12-1 Projective representations of finite groups 12-2 Examples of projective representations of finite groups 12-3 Ray representations of Lie groups 12-4 Ray representations of the pseudo-orthogonal groups 12-5 Ray representations of the Galilean group 12-6 Irreducible representations of translation groups 12-7 Little groups BIBLIOGRAPHY AND NOTES INDEX