ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Groundwater engineering : recent advances : proceedings of the International Symposium on Groundwater Problems Related to Geo-environment, Okayama, Japan, 28-30 May 2003

دانلود کتاب مهندسی آب‌های زیرزمینی: پیشرفت‌های اخیر: مجموعه مقالات سمپوزیوم بین‌المللی مشکلات آب‌های زیرزمینی مرتبط با ژئومحیط، اوکایاما، ژاپن، 28-30 می 2003

Groundwater engineering : recent advances : proceedings of the International Symposium on Groundwater Problems Related to Geo-environment, Okayama, Japan, 28-30 May 2003

مشخصات کتاب

Groundwater engineering : recent advances : proceedings of the International Symposium on Groundwater Problems Related to Geo-environment, Okayama, Japan, 28-30 May 2003

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9058093859, 9789058093851 
ناشر: Balkema 
سال نشر: 2003 
تعداد صفحات: 582 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Groundwater engineering : recent advances : proceedings of the International Symposium on Groundwater Problems Related to Geo-environment, Okayama, Japan, 28-30 May 2003 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی آب‌های زیرزمینی: پیشرفت‌های اخیر: مجموعه مقالات سمپوزیوم بین‌المللی مشکلات آب‌های زیرزمینی مرتبط با ژئومحیط، اوکایاما، ژاپن، 28-30 می 2003 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Groundwater Engineering ? Recent Advances......Page 2
Table of Contents......Page 4
Preface......Page 9
Organization......Page 10
Acknowledgements......Page 11
Part 1: Invited lectures......Page 12
1.1 Dependence on support volume......Page 13
1.2 Dependence on observation scale......Page 15
1.4 Dependence on resolution and support scale......Page 16
1.6 Is the permeability scale effect real?......Page 18
2.1 Truncated power variograms......Page 19
2.2 Consistency with data......Page 20
2.3 Up- and down-scaling permeability......Page 21
2.4 Scaling of apparent longitudinal dispersivity......Page 22
2.5 Hydrogeologic rationale......Page 23
REFERENCES......Page 24
1 INTRODUCTION......Page 26
3.1 Development of large-scaled 3-D model......Page 27
3.3 Determination of allowable impact and proposal for the best groundwater measure......Page 28
3.5 Evaluation of impacts on neighboring lake......Page 29
3.6.2 Predictive analysis of impacts on the lake during main pit excavation Step 5......Page 30
4 CONCLUSIONS......Page 32
REFERENCES......Page 33
1 INTRODUCTION......Page 34
2.2.1 Normal dissolution......Page 35
2.2.2 Enhanced dissolution using surfactants......Page 36
3.1 Two-dimension horizontal dissolution cell......Page 37
3.1.2 Enhanced dissolution......Page 38
3.1.3 Multiple tracers test......Page 39
4.3 Normal dissolution simulation......Page 40
4.4 Surfactant enhanced remediation simulation......Page 41
5 CONCLUSIONS......Page 42
REFERENCES......Page 43
2 FATE OF THE COMPOUNDS IN SOIL AND GROUNDWATER......Page 45
3.3 Monoaromatic compounds......Page 46
REFERENCES......Page 47
1 INTRODUCTION......Page 49
2 THE BOUNDARY AND TRANSITION LAYERS AT THE FRACTURE?MATRIX INTERFACE......Page 50
2.1 The boundary layer effect on the breakthrough curve at the fracture outlet......Page 52
2.2.1 Matrix diffusion and back-diffusion CT measurement......Page 53
2.2.2 Modeling the Diffusion and back-diffusion ? the transition layer concept......Page 55
3 DISCUSSION......Page 58
REFERENCES......Page 60
1.1 World-wide data collection on flood hazards......Page 61
1.2 The role of geotechnical engineering......Page 62
2.1 Dike technology......Page 63
2.3 Dike ring approach......Page 64
2.3.2 Functional analysis......Page 65
2.5 Dealing with uncertainties and risk perception......Page 66
3.1 Uplift length......Page 68
4.2 Slope stability......Page 70
4.2.2 Rigid vertical dowel; viscoplastic extrusion and wedges......Page 71
4.3 Validation by finite element calculation......Page 72
ANNEX 1 Conformal mapping......Page 73
ANNEX 2 Rankine wedge......Page 74
Part 2: Keynote lectures......Page 75
2 LABORATORY INVESTIGATION......Page 76
3 FINITE ELEMENT FORMULATION......Page 77
4 APPLICATIONS......Page 78
5 CONCLUDING REMARKS......Page 79
REFERENCES......Page 81
1 INTRODUCTION......Page 82
2.1 Complexity of NAPL contamination......Page 83
2.2 Remediation technologies and their efficiencies......Page 84
3.1 Potential questions......Page 85
3.2.1 Enhanced flushing remediation......Page 86
3.2.2 Chemical oxidation......Page 88
3.2.3 Air sparging......Page 89
3.3 Numerical investigation of mass transfer from source zone......Page 90
4 CONCLUDING REMARKS......Page 92
REFERENCES......Page 93
1 INTRODUCTION......Page 95
2.2 Geology and geotechnics......Page 96
3 WATER DEMAND, SUPPLY AND QUALITY......Page 97
4 GROUNDWATER SUPPLY, DEMAND AND QUALITY......Page 98
6 IN SITU MEASUREMENTS OF SELECTED WATER QUALITY PARAMETERS OF MGDM TUBE WELLS IN LANGAT BASIN......Page 99
9.1 Waste generation......Page 100
9.2 “Unengineered? landfills......Page 101
10 PRECAUTIONARY MEASURES......Page 102
REFERENCES......Page 103
2 REASON OF BRINE PHENOMENA......Page 104
3.1 Area division......Page 105
3.4 The western area......Page 109
4.1 Low groundwater level and excessive pumping......Page 110
4.3 Distribution depth of low permeable sedimentary formation......Page 112
REFERENCES......Page 113
1 INTRODUCTION......Page 115
3 NEW ASPECTS OF WATER MANAGEMENT SYSTEMS......Page 117
4 THE CONCEPT OF OSMOW......Page 119
Marchfeld region in Lower Austria......Page 120
6 SOCIAL ASPECTS......Page 121
7 CONCLUSION......Page 122
1 INTRODUCTION......Page 123
2.1 General theory......Page 124
2.3 Numerical examination and results......Page 125
3.1 Indicator simulation method......Page 127
3.2 Soft data treatment......Page 129
4.1.1 Fracture generation......Page 130
4.1.3 Results......Page 131
4.2.1 Modeling method of large region......Page 132
4.3 Conclusions......Page 134
REFERENCES......Page 135
Part 3: Dewatering at excavation sites......Page 136
2 DESIGN OF THE WATER SEALING SYSTEM......Page 137
3.1.1 Geological observation at the face......Page 138
3.1.4 Rate of seepage water......Page 139
REFERENCE......Page 140
2 DETAILS OF EXCAVATION......Page 141
3 OCCURRENCE OF BLOW-OUT OF SOIL PARTICLES AND COUNTERMEASURES......Page 143
4.2 Stability against boiling of bottom soil in excavation......Page 144
REFERENCES......Page 146
2 FINITE ELEMENT ANALYSIS OF WATER FLOW THROUGH SOILS......Page 147
3.1 Case one......Page 148
3.2 Case two......Page 150
REFERENCES......Page 152
1 PREFACE......Page 153
3.2.2 Result of countermeasures......Page 154
4 OBSERVATIONAL MONITORING CONTROL......Page 156
4.1 Monitoring items and locations of equipment......Page 157
4.2.2 High-tension triaxial test......Page 158
4.3 A measurement and an analysis result......Page 159
4.4 Assumed behavior of improved soil slab......Page 160
REFERENCE......Page 161
2.1 Design method for multiple well system......Page 162
2.2 Drawdown characteristics in excavation area enclosed by a cut-off wall in single aquifer system......Page 163
2.3 Conversion of the interbedded aquitard permeability into the cut-off wall length in multi-layered aquifer system......Page 164
3.2.2 Determination of the number of deepwells......Page 165
4.2.2 Deepwell number......Page 166
5 CONCLUSIONS......Page 167
REFERENCES......Page 168
Part 4: Effects of subsurface water on stability of slopes......Page 169
1 INTRODUCTION......Page 170
3 TESTS AND RESULTS......Page 171
4 CONCLUSIONS......Page 174
REFERENCES......Page 175
1 INTRODUCTION......Page 176
4 RAINFALL AND DEVELOPED PORE-WATER PRESSURE......Page 177
7 PROPOSED STABILIZATION METHOD......Page 178
REFERENCES......Page 179
1 INTRODUCTION......Page 180
2.2 Measuring system......Page 181
3.1 Variation of water content and suction......Page 182
3.2 In-situ water retention curve of Masado......Page 183
3.3 The implications for groundwater modeling......Page 184
4 CONCLUSIONS......Page 185
REFERENCES......Page 186
Part 5: Preservation of natural groundwater flow......Page 187
2 OUTLINE OF TOPOGRAPHY AND GEOLOGY......Page 188
6 RELATIONSHIP BETWEEN CAVES AND SALT-WATER INTRUSION......Page 190
7.2 Distribution of character of the vertical distribution of EC......Page 191
8.1 Formation age of caves......Page 193
REFERENCES......Page 195
3.1.1 Soil profiles Figure 1......Page 196
3.2 Groundwater level......Page 197
3.3 Soil water content......Page 198
3.4 Soil macropore and infiltration......Page 199
3.5 Hydrologic cycle in the shallow layer......Page 200
REFERENCES......Page 201
2 MECHANISM OF INSTABILITY OF FOUNDATIONS AND GROUND DUE TO RISE IN GROUNDWATER LEVEL......Page 202
3 DECREASE IN BEARING CAPACITY DUE TO RISE IN GROUNDWATER LEVEL......Page 203
4.1 A method for evaluating the settlements of foundations......Page 204
5 CONCLUSION......Page 206
REFERENCES......Page 207
1 INTRODUCTION......Page 208
4.1 Pressure head......Page 209
4.3 Groundwater recharge......Page 211
REFERENCES......Page 212
1 CONDITIONS WHICH CURRENTLY SURROUND UNDERGROUND CONSTRUCTION......Page 213
3 PRESERVATION METHOD OF GROUNDWATER FLOW......Page 214
REFERENCE......Page 218
1.3 Detailed investigation......Page 219
3 SUMMARY......Page 222
REFERENCES......Page 223
1 INTRODUCTION......Page 224
4 DESIGN PROCEDURE......Page 225
5.2 Methods for water conduction......Page 226
6 DESIGN ARTICLES......Page 227
7.1 Methods of design calculation......Page 228
8 CONSIDERATION OF LONG-TERM CLOGGING......Page 229
REFERENCES......Page 230
1.1.1 Types of materials......Page 231
3 Earth retaining wall removal and partial destruction method......Page 232
1.2.1 Filter type system......Page 233
1 Open hole well......Page 234
2 Installation of water-passing pipe inside of the Cut & Cover structure......Page 235
2 Performance tests after completion......Page 236
1.1.2 Relation between the performance and the maintenance of pass-through facilities......Page 237
2.1 Measurement purpose of each stage......Page 238
2.2.2 Measurement and management of pass situation......Page 239
2.2.3 Measures after construction......Page 240
1.2 The need for an assessment method......Page 241
2.1 Requirements for assessment method......Page 242
3.3 Analysis and design of the groundwater preservation system......Page 243
4.2 Groundwater observations......Page 244
4.5 Effects on vegetation......Page 245
5 CONCLUSION......Page 246
REFERENCES......Page 247
2 STATE OF THE GEOLOGY AND THE GROUNDWATER......Page 248
3.3 Analysis conditions......Page 249
5.1.1 Results of past research based on a water budget......Page 250
5.1.2 Rainfall infiltration taking account of the state of land use......Page 251
5.1.3 Rainfall infiltration based on the tank model......Page 252
6 CONCLUSION......Page 253
REFERENCES......Page 255
Part 6: Contamination of soil and groundwater: investigation, prediction and remediation......Page 256
2 CONCEPTS......Page 257
3.2 Dispersion test......Page 258
4 RESULT AND DISCUSSION......Page 259
5.2 In-situ measurement and monitoring......Page 260
REFERENCES......Page 261
1 INTRODUCTION......Page 262
2.1 Arsenic detection by field and laboratory tests......Page 263
3 POPULATION EXPOSED TO ARSENIC CONTAMINATION......Page 264
3.1 Number of arsenic patients......Page 265
4.2 Oxy-hydroxide reduction hypothesis......Page 266
6 ARSENIC MITIGATION PROGRAMS......Page 267
REFERENCES......Page 268
1 INTRODUCTION......Page 270
3 RESULTS......Page 271
4 DISCUSSIONS......Page 273
REFERENCES......Page 274
2.1 Outline of unsaturated seepage column tests......Page 275
2.2 Test results and considerations......Page 276
3.1 Estimation of restorative effectiveness and efficiency for different ground conditions......Page 277
3.2 Measures to improve restorative effectiveness for clayey ground......Page 278
4 CONCLUSIONS......Page 279
REFERENCES......Page 280
1.1 General introduction......Page 281
2.1 Mathematical modeling......Page 282
2.3 Characterization of lysimeter......Page 283
2.5 Biodegradation parameters......Page 284
3.2 Decay in constant precipitation......Page 285
3.3 Decay in actual daily precipitation......Page 286
REFERENCES......Page 287
2.2 Sample column experiment......Page 288
3 RESULTS AND DISCUSSIONS......Page 289
REFERENCES......Page 292
2 CENTRIFUGE MODELING......Page 293
3.1 LNAPL transportation in the sand deposit without a barrier wall Model A......Page 295
3.2 The LNAPL transportation of Model B......Page 296
4 CONCLUSIONS......Page 297
REFERENCES......Page 298
2 ELECTROMIGRATION......Page 299
3.3 Electrode reaction......Page 300
4.2 Initial condition......Page 301
5.2 Distribution of total copper......Page 302
5.4 Effect of applied voltage and purge flow on the distribution of total copper X1......Page 303
REFERENCES......Page 304
2 OVERVIEW OF THE FIELD TEST......Page 305
3.3 Retardation factor......Page 306
4.2 Mixing region......Page 307
4.3 Injection pattern......Page 308
5 CONCLUSIONS......Page 309
REFERENCES......Page 310
2.1 On HRC......Page 311
3.1 Decreasing of chlorinated organic compounds......Page 312
3.3 DO and pH......Page 313
3.4 ORP and sulfate concentration......Page 314
3.5 Other environmental parameters......Page 315
REFERENCES......Page 316
1 INTRODUCTION......Page 317
3.1 Oxygen uptake rate and benzene degradation......Page 318
4 CONCLUSIONS......Page 320
REFERENCES......Page 321
2.1 Study area......Page 322
3.1 Changes in amount of nitrogen fertilizer used......Page 323
3.4 Total Al......Page 324
3.7 Total Mn......Page 325
3.8 Nitrate concentrations with pH and Al......Page 326
4 CONCLUSION......Page 327
REFERENCES......Page 328
2 PRINCIPLE OF EDEC......Page 329
3.2 Results and discussion......Page 330
4.2 Results and discussion......Page 332
5.1 Experimental method......Page 333
6 DESIGN OF ELECTRIC ANDWATER FLOW CONDITIONS IN EDEC......Page 334
REFERENCES......Page 335
2.1 General aspects of risk assessment......Page 336
3.1 Site description......Page 337
4.2 Modeling of contaminant transport......Page 338
5 HUMAN HEALTH RISK ASSESSMENT......Page 340
REFERENCES......Page 341
1 INTRODUCTION......Page 343
3.1 DNAPL spill simulation......Page 344
3.2 Mass transfer simulation......Page 345
4.1 Effect of flow velocity and rate-limited mass transfer on source zone mass outflux......Page 346
4.3 Modified normalization of mass outflux......Page 347
5 CONCLUSIONS......Page 348
REFERENCES......Page 349
1 INTRODUCTION......Page 350
3 THE POTENTIAL PROBLEM......Page 351
4 THE ADVECTIVE TRANSPORT PROBLEM......Page 352
5 THE LINE SOURCE PROBLEM......Page 353
REFERENCES......Page 355
3 TESTED SOILS AND OILS......Page 356
4 COMPACTION TESTS......Page 357
5 HYDRAULIC CONDUCTIVITY TESTS......Page 358
6 DISCUSSION......Page 359
REFERENCES......Page 360
1 INTRODUCTION......Page 362
2.2 Procedures......Page 363
3.2 Distribution of ethanol concentration, water content, shear strength, and dry density in the cutoff wall......Page 365
3.3 Settlement and displacement of the surface......Page 367
REFERENCES......Page 368
3 METHOD......Page 369
4.1 Spatial distribution of?......Page 370
4.2 Spatial distribution of?......Page 371
4.3 Temporal variation of?......Page 372
REFERENCES......Page 373
1 INTRODUCTION......Page 374
2.3 Experimental results......Page 375
3.2 Large soil tank experiment......Page 377
3.3 Experimental results......Page 378
4 SUMMARY......Page 379
REFERENCES......Page 380
Part 7: Field survey and determination of hydraulic properties......Page 381
2 CALCULATING METHOD......Page 382
3.1 Water content curve......Page 383
3.2 Relationship of the degree of saturation \0匀攀 and resistivity 섀......Page 384
4.2 Analysis example......Page 385
5 CONCLUSION......Page 386
REFERENCES......Page 387
2 CLOGGING CHARACTERISTICS OF RECHARGE WELLS......Page 388
3 OUTLINE OF TESTS......Page 389
4 TEST RESULTS......Page 390
REFERENCES......Page 393
2.2 Artificial recharge......Page 395
3.1 Study area......Page 396
3.3 Results......Page 397
REFERENCES......Page 399
1 INTRODUCTION......Page 400
3 IN-SITU TEST......Page 401
4.1 Strategy......Page 402
4.2 Examination results......Page 403
5 CONCLUSIONS......Page 404
REFERENCES......Page 406
2 GEOLOGICAL FEATURES AND PREVIOUS SURVEYS OF THE SURVEY AREA......Page 407
3 DESCRIPTION OF DIRECTIONAL DRILLING SYSTEM......Page 408
4 SURVEY OF DIRECTIONAL CORE DRILLING......Page 409
5 FUTURE OUTLOOK......Page 411
REFERENCES......Page 412
3 VARIATION OF PERMEABILITY WITH SCALE......Page 413
4 PERMEABILITY SCALE EFFECT AT THE ALRS......Page 414
REFERENCES......Page 416
2.1 Topography......Page 419
3.2 Field measurements......Page 420
4.1 Geologic logs......Page 421
5.1 Geologic structure......Page 424
REFERENCES......Page 426
3.1 Measuring method......Page 427
3.2 Method of analysis......Page 428
5.2 Rainfall and measurement......Page 429
5.3.1 Comparison of distributions of resistivity before, during, and after rainfall......Page 430
7 CONCLUSIONS......Page 431
REFERENCES......Page 433
2 GEOLOGICAL CHARACTERISTICS AT THE TEST SITE AND JOINTS IN PYROXENE ANDESITE......Page 434
3 INVESTIGATIONS AND TESTS FOR EVALUATING THE PERMEABILITY OF PYROXENE ANDESITE......Page 436
3.1 Permeability estimated from a model of water balance in the river basin......Page 437
3.2 Permeability estimated from groundwater velocity......Page 438
REFERENCES......Page 439
2.1 Test procedure......Page 441
3.1 Time series of saturation ratio......Page 442
3.3 Formation of trapped air bubbles......Page 443
REFERENCES......Page 444
2 THEORETICAL BACKGROUNDS......Page 445
3 STORATIVITY EFFECT......Page 446
5.2 Discussion......Page 447
SYMBOLS......Page 448
2 LABORATORY TEST......Page 449
3.2 Principles of measurement drainage test......Page 450
3.3 Experimental results drainage test......Page 451
4.1 Experiment apparatus......Page 452
4.3 Discussion of results......Page 453
REFERENCES......Page 454
2.1 Test method......Page 456
2.2 Method of test result analysis......Page 457
4.1 Relationship between the results of Lugeon test and highly viscous fluid tests......Page 458
4.2 Evaluation of critical Reynolds number......Page 461
REFERENCES......Page 462
Part 7: Modeling and analysis of groundwater flow......Page 463
1 INTRODUCTION......Page 464
3 CONSISTENCY-FREE MESH ASSEMBLY......Page 465
4.1 Composite consisting of simple geometries......Page 466
4.2 Fictitious geological structure......Page 468
5 CONCLUSIONS......Page 469
REFERENCES......Page 470
1 INTRODUCTION......Page 471
3 ANALYTICAL STRATEGIES......Page 472
4.2 Analytical cases......Page 473
5.2 Analyses with variable sea level......Page 474
6.2 Effect of the groundwater level in the land area......Page 475
7 SUMMARY......Page 476
REFERENCES......Page 477
2 MODELING OF SEEPAGE BEHAVIOR IN UNSATURATED SOIL......Page 478
3 MODELING OF EVAPORATION IN UNSATURATED SOIL......Page 480
4.1 Field measurement of suction, temperature and precipitation......Page 481
4.2 Numerical simulation......Page 482
REFERENCES......Page 483
2 GEOLOGY AND HYDROGEOLOGY OF STUDY AREA......Page 485
3.3 Model description......Page 487
4.1 Water budget......Page 488
4.3 Source of saline water......Page 489
REFERENCES......Page 490
2.1 Descriptive words......Page 491
2.4 Viewing information......Page 492
3.2 Flowpath routine......Page 493
4.1 Construction of contour......Page 494
4.2 Moving contour......Page 495
6 CONCLUSIONS......Page 496
REFERENCES......Page 497
1 INTRODUCTION......Page 498
3.3 Water exchange between stream and aquifer......Page 499
4.2 The discrete formulation of Kinematic wave model......Page 500
5.1 Data preparation......Page 501
5.4.1 Seasonal changes of the water exchange between aquifer and Fuefuki River......Page 502
6 CONCLUSIONS......Page 503
REFERENCES......Page 504
1 INTRODUCTION......Page 505
2.2 Preparation of a specimen with a minute gap......Page 506
2.3 Experimental cases......Page 507
3 EXPERIMENTAL RESULTS AND EVALUATION OF PERMEABILITY......Page 508
4 FORMULATION OF EXPERIMENTAL RESULTS......Page 509
REFERENCES......Page 510
2.1 Topography of the Kurashiki site......Page 511
3.1 Facilities......Page 512
4.1 Estimation of the lowering of groundwater level as a result of cavern excavation......Page 513
4.1.2 Three-dimensional analysis model......Page 514
4.1.3 Layout of geological classification......Page 515
4.1.7 Estimation of subsidence due to compaction by the decrease of hydraulic head......Page 516
4.2 Estimation of subsidence due to compaction by the lowering of groundwater level......Page 517
5 PREVENTION OF THE LOWERING OF GROUNDWATER LEVEL......Page 518
REFERENCES......Page 519
2 STUDY AREA......Page 520
4 RESULTS......Page 521
5.4 36Cl data......Page 524
6 CONCLUSIONS......Page 525
REFERENCES......Page 526
2.2 Topography around the study area......Page 527
1 Tsukiyoshi fault......Page 528
3.3 3-D Geological modeling......Page 529
4.3 Boundary conditions......Page 530
6.1 Groundwater flow direction......Page 531
6.3 Proposal to future investigations......Page 532
REFERENCES......Page 533
1 INTRODUCTION......Page 534
2.2 Experimental apparatus and procedures......Page 535
4 RESULTS AND DISCUSSIONS......Page 536
REFERENCES......Page 539
2.1 Inversion method......Page 541
3 NUMERICAL CASE STUDIES......Page 542
4 RESULTS AND DISCUSSIONS......Page 543
5 CONCLUSIONS......Page 545
REFERENCES......Page 546
2.1 Geology of Tangalle area......Page 547
3.1 Don-Chan model......Page 548
4 SENSITIVITY ANALYSIS......Page 550
REFERENCES......Page 552
2 ANALYTICAL MODEL......Page 554
3 CALCULATION OF POREWATER PRESSURE......Page 555
4 RESULTS AND DISCUSSION......Page 556
REFERENCES......Page 557
2.1 Mathematical formulations......Page 558
3.2 Gaussian random field simulation......Page 559
3.3 Non-Gaussian random field simulation......Page 560
5.1 Model description......Page 561
5.2 Result of analysis......Page 563
REFERENCES......Page 564
2 BASIC COMPUTATION......Page 565
3.1 Case of large number of wells: case1......Page 566
3.3.2 Discharge well in the natural groundwater flow: case3b......Page 567
3.4 Case of collection wells for polluted groundwater in natural groundwater flows......Page 568
REFERENCES......Page 569
2.2 Geological and hydrogeological models......Page 570
3.2 Modeling tool......Page 571
3.4 Data used......Page 572
3.5 Boundary conditions......Page 573
4.2 Groundwater flow during tunnel construction......Page 574
5 MAIN RESULTS......Page 575
REFERENCES......Page 576
2.2 Basic equations......Page 577
2.3 Boundary conditions......Page 578
3.1 The deviation from the cubic law of fracture permeability......Page 579
3.4 Conclusions......Page 580
3.6 Analysis of 3D models......Page 581
REFERENCES......Page 582




نظرات کاربران