دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ernesto Villaescusa, Alan G. Thompson, Christopher R. Windsor, John R. Player سری: ISBN (شابک) : 9781032399720, 9781003357711 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 441 [442] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 185 Mb
در صورت تبدیل فایل کتاب Ground Support Technology for Highly Stressed Excavations: Integrated Theoretical, Laboratory, and Field Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری پشتیبانی زمینی برای حفاریهای با تنش بالا: تحقیقات تئوری، آزمایشگاهی و میدانی یکپارچه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عملکرد تکیه گاه زمین به عنوان یک طرح برای محدود کردن شکست های رخ داده در سطوح سنگی حفاری های عمیق یا با تنش بسیار ضروری است. این کتاب تحولات آزمایشگاهی و نظری همراه با آزمایشهای میدانی و مشاهدات با اجرای روششناسی در معادن را پوشش میدهد. این قابلیتهای اتلاف انرژی سیستمهای تقویتکننده و پشتیبانی را توضیح میدهد که منجر به طراحی طرحهای پشتیبانی کامل از زمین میشود که میتواند یکپارچگی را پس از بیرونریزی دینامیکی یک توده سنگ از مرز حفاری حفظ کند. امکانات: مکانیک و تقاضای فناوری پشتیبانی زمینی را بررسی می کند. طیف وسیعی از نظریه ها، نتایج آزمایشات آزمایشگاهی و میدانی و مطالعات موردی مربوط به فناوری پشتیبانی زمینی را پوشش می دهد. شامل پایگاه داده جامع مش، بولت سنگ، پیچ کابل، ظرفیت شاتکریت است. آزمایش و توضیح طرح پشتیبانی زمینی را بررسی می کند. در مورد مطالعات موردی جامع از جمله انفجار تنش زدایی بحث می کند. این کتاب برای متخصصان مهندسی معدن از جمله مهندسی عمران، مهندسی زمین شناسی و مهندسی ژئوتکنیک و تحصیلات تکمیلی پیشرفته مرتبط است.
The performance of ground support as a scheme is essential to constrain failures occurring at the rock surfaces of deep or highly stressed excavations. This book covers laboratory and theoretical developments coupled with field experiments and observations with implementation of the methodology at mines. It explains the energy dissipation capabilities of reinforcement and support systems leading to the design of complete ground support schemes that can maintain integrity following dynamic ejection of a mass of rock from an excavation boundary. Features: Explores mechanics and demand of ground support technology. Covers whole gamut of theories, laboratory and field test results and case studies related to ground support technology. Includes comprehensive database of Mesh, rock bolts, cable bolt, shotcrete capacity. Examines ground support scheme testing and explanation. Discusses comprehensive case studies including de-stress blasting. This book is aimed at professionals in mining engineering including civil, geological engineering, and geotechnical engineering and Related advanced post graduate studies.
Cover Half Title Title Copyright Contents About the Authors Foreword Preface Acknowledgements Chapter 1 Introduction 1.1 Introduction 1.2 The Process of Support and Reinforcement 1.3 Brief History of Ground Support Technology 1.4 Scope and Contents of This Book Chapter 2 Terminology 2.1 Introduction 2.2 Reinforcement System Response 2.3 Continuous Mechanically Coupled 2.4 Continuous Frictionally Coupled 2.5 Discrete Mechanically or Frictionally Coupled 2.6 The Load Transfer Concept 2.7 The Embedment Length Concept 2.8 Materials Behaviour Terminology 2.8.1 Elastic 2.8.2 Plastic 2.8.3 Brittle 2.8.4 Ductile 2.8.5 Resilience 2.8.6 Toughness 2.8.7 Yield 2.8.8 Stiffness 2.9 Performance Indicators of Capacity 2.10 Surface Support System Response 2.10.1 Type of Support Systems 2.10.1.1 Point Support Systems 2.10.1.2 Strip Support Systems 2.10.1.3 Areal Support Systems 2.10.2 Loading Mechanisms 2.10.3 Load Transfer Concepts 2.10.3.1 Point Support Systems 2.10.3.2 Strip and Areal Support Systems Chapter 3 Probabilistic Simulation of Rock Mass Demand 3.1 Introduction 3.2 Rock Mass Characterization 3.2.1 Geotechnical Mapping of Underground Exposures 3.3 Rock Mass Model 3.4 Deterministic Assessment of Rock Mass Instabilities 3.5 Probabilistic Assessment of Rock Mass Instabilities 3.5.1 Interpretation of Results Chapter 4 Ground Support Mechanics 4.1 Introduction 4.2 Reinforcement Response 4.2.1 Load Transfer within the Collar Region 4.2.2 Load Transfer along the Element and at the Toe Anchor Region 4.3 Surface Support Response 4.4 Failure Geometry 4.5 Surface Layer Toughness 4.6 Ground Support Scheme Chapter 5 Ground Support Design 5.1.Introduction 5.2.Rock Mass Characterization 5.2.1.Structure 5.2.2.Strength 5.3.Tunnel Instability 5.2.1.Spalling Failure 5.2.2.Structurally Controlled Failure 5.2.3.Damage and Deformation Prior to Violent Failure 5.3.Ejection Velocity 5.4.Ground Support Demand 5.4.1.Shallow Depth of Failure (Spalling) 5.4.2.Structurally Controlled Depth of Failure 5.5.Ground Support Capacity 5.5.1.Ground Support Design for Extremely High Demand Conditions Chapter 6 Laboratory Testing 6.1 Introduction 6.2 Testing Documentation 6.3 Component Testing 6.4 Element Testing 6.4.1 Prestressing Strand 6.4.2 Solid Threaded Bar 6.5 Internal Fixture Testing 6.5.1 Slot and Wedge Anchors 6.5.2 Expansion Shell Anchors 6.5.3 Cement Grouts 6.5.4 Resin Grouts 6.6 External Fixture Testing 6.6.1 Split Tube Rings 6.6.2 Barrel and Wedge Strand Anchors 6.6.3 Plates 6.7 Systems Testing 6.7.1 Cable Bolt Pull Tests 6.7.2 Resin-Encapsulated Reinforcement Ł 6.8 WASM Dynamic Test Facility 6.8.1 Force Transfer and Displacement 6.8.2 Simulated Boreholes and Sample Installation 6.8.3 Dynamic Test Results 6.8.4 Analysis of Dynamic Test Results 6.8.5 Dynamic Testing of Mesh and Shotcrete Layers Chapter 7 Energy Dissipation of Rock Bolts 7.1 Introduction 7.2 Momentum Transfer 7.3 Reinforcement System Load Transfer 7.4 Continuously Frictionally Coupled 7.4.1 Friction Rock Stabilizer 7.4.1.1 Static Testing 7.4.1.2 Dynamic Testing 7.4.2 Expanded Tube Bolts 7.4.2.1 Static Testing 7.4.2.2 Dynamic Testing 7.4.3 Hybrid Point Anchored Bar and Split Tube Bolts 7.4.3.1 Borehole Simulation and Installation 7.4.3.2 Dynamic Testing 7.5 Continuously Mechanically Coupled 7.5.1 Cement-Encapsulated Threaded Bar 7.5.1.1 Australian Threaded Bar 7.5.1.2 Chilean Threaded Bar 7.5.2 Resin-Encapsulated Threaded Bar 7.6 Discretely Mechanically or Frictionally Coupled 7.6.1 Cement-Encapsulated Decoupled Threaded Bar 7.6.2 Resin-Encapsulated Decoupled Posimix 7.6.3 Cement- and Resin-Encapsulated D Bolt 7.6.4 Cement- and Resin-Encapsulated Cone Bolt 7.6.5 Cement- and Resin-Encapsulated Garford Dynamic Bolt 7.6.6 Cement-Encapsulated Durabar Bolt 7.6.7 Cement-Encapsulated Yield-Lok Bolt 7.6.8 Self-Drilling Anchor Bolt Chapter 8 Energy Dissipation of Cable Bolts 8.1 Introduction 8.2 Cement Grout 8.2.1 Physical and Mechanical Properties 8.2.1.1 Fresh Cement Paste 8.2.1.2 Hardened Cement 8.2.2 Grouting Reinforcement Boreholes 8.2.2.1 Toe-to-Collar Grouting 8.2.2.2 Mechanized Grouting 8.3 Cable Bolt Types 8.3.1 Modified Strand Cable Bolts 8.3.2 Plain Strand—15.2 mm Diameter 8.3.3 Plain Strand—17.8 mm Diameter 8.3.4 Decoupled Strand 8.3.5 Multiple Dynamic Impact Testing 8.4 Cable Bolt Plates 8.4.1 Barrel and Wedge Anchors 8.4.1.1 Anchor Installation 8.4.1.2 Anchor Mechanism and Performance 8.4.2 Dynamic Testing Results Chapter 9 Energy Dissipation of Mesh Support 9.1 Introduction 9.2 Mesh Load Transfer 9.3 Mesh Testing 9.3.1 Boundary Conditions 9.3.2 Loading Method 9.4 Mesh Force and Displacement 9.4.1 Static Results for Welded Wire Mesh 9.4.2 Static Results for Woven Mesh 9.4.3 Dissipated Static Energy 9.4.4 Dynamic Results for Welded Wire Mesh 9.4.5 Dynamic Results for Woven Mesh 9.4.6 Dissipated Dynamic Energy Chapter 10 Energy Dissipation of Shotcrete Support 10.1 Introduction 10.2 Shotcrete Mix Design 10.3 Material Properties 10.3.1 Cement 10.3.2 Mechanism of Hydration of Cement 10.3.3 Supplementary Cementing Materials 10.3.3.1 Silica Fume 10.3.3.2 Fly Ash 10.3.3.3 Slag Cement 10.3.4 Mixing Water 10.3.5 Aggregate 10.3.6 Fibres 10.3.6.1 Steel Fibres 10.3.6.2 Synthetic Fibres 10.3.7 Admixtures 10.3.7.1 Accelerator 10.3.7.2 Superplasticizer 10.3.7.3 Air-Entraining 10.3.7.4 Hydration Stabilizer 10.4 Shotcrete Support System 10.4.1 Rock Surface and Shotcrete Profiles 10.4.2 Deformation Mechanisms 10.5 Static Performance of Freshly Sprayed Shotcrete 10.5.1 Review of Shotcrete Early Strength 10.5.2 Shear Strength of Freshly Sprayed Shotcrete 10.5.2.1 Development of Shear Strength of Shotcrete Paste with and without the Influence of a Chemical Admixture 10.5.2.2 Development of Shear Strength of Shotcrete Paste with Various Combinations of Mixed Components 10.5.3 Structural Requirements for a Freshly Sprayed Shotcrete Layer 10.5.3.1 Requirements for Self-Support 10.5.3.2 Required Shotcrete Shear Strength for Self-Weight and Block Support 10.5.4 Safe Re-entry Time 10.6 Static Performance of Cured Shotcrete 10.6.1 Uniaxial Compressive Strength (UCS) 10.6.2 Tensile Strength 10.6.3 Tensile Bond Strength of Rock—Shotcrete Interface 10.6.4 Shear Strength 10.6.5 Toughness 10.7 Shotcrete Failure Mechanisms 10.7.1 Shotcrete Load Transfer 10.8 Large Scale Static Testing 10.9 Large Scale Dynamic Testing 10.9.1 Shotcrete Test Set-Up 10.9.2 Shotcrete Failure Mechanism 10.9.3 Shotcrete Energy Dissipation 10.9.3.1 Fibre-Reinforced Shotcrete 10.9.3.2 Mesh-Reinforced Shotcrete Chapter 11 Dynamic Performance of Ground Support Schemes 11.1 Introduction 11.2 Load Transfer 11.3 Free Body Diagrams 11.4 Combined Reinforcement and Mesh Schemes 11.4.1 Sample Preparation and Testing 11.4.2 Data Analysis 11.4.3 Data 11.4.3.1 Cement-Encapsulated Rebar and G80/4 Mesh 11.4.3.2 Cement-Encapsulated Rebar and Welded Wire Mesh 11.4.3.3 Decoupled Posimix and Welded Wire Mesh 11.4.3.4 Decoupled Posimix and Woven Mesh 11.4.4 Summary of Energy Dissipation 11.5 Large-Scale Testing of Full-Scale Schemes Chapter 12 Reinforced Block Analysis 12.1 Introduction 12.2 Description of the Problem 12.3 Reinforcement Response at a Block Face 12.4 Reinforcement Databases 12.4.1 A Generic Reinforcement System 12.4.2 Measurement of Reinforcement System Responses 12.4.3 Reinforcement System Simulations 12.4.4 Reinforcement System Responses 12.4.4.1 Component Properties 12.4.4.2 Interface Properties 12.4.4.3 Variations of Axial Force-Displacement Responses with Encapsulation Length 12.4.4.4 Axial Force-Displacement Responses with External Fixture and Encapsulation Lengths 12.4.5 Application of the Reinforcement Databases in Design for a Reinforced Block 12.4.5.1 Description of the Analysis 12.4.5.2 Estimation of Force-Displacement Responses 12.5 Static Analysis of a Reinforced Arbitrarily-Shaped Block 12.5.1 The Design Problem 12.5.2 Description of the Analysis Method 12.6 Dynamic Block Loading 12.6.1 Newtonian Mechanics-Based Analysis 12.6.2 Momentum-Based Analysis 12.6.3 Energy-Based Analysis 12.6.4 Summary of Dynamic Analysis Methods 12.7 Displacement Controlled Dynamic Analysis Methodology 12.8 Example of Implemented Theory 12.8.1 Description of the Analysis 12.8.2 Imposed Loading and Results Chapter 13 Construction and Monitoring 13.1 Introduction 13.2 Induced Stress 13.3 Construction 13.3.1 Excavation Shape 13.3.2 De-Stress Blasting 13.3.2.1 Mechanics 13.3.2.2 De-stress Blasting Patterns 13.3.2.3 Explosive Energy 13.3.2.4 Micro Seismic Activity 13.3.2.5 Geotechnical Concerns 13.3.2.6 Case Study—Kanowna Belle Mine, WA, Australia 13.3.3 Construction of a High Energy Dissipation Ground Support Scheme 13.3.3.1 Clearing of Temporary Face Support 13.3.3.2 Mechanical Scaling 13.3.3.3 Structural Geological Mapping with Photogrammetry 13.3.3.4 Shotcrete Application 13.3.3.5 Primary Reinforcement Mark-Up 13.3.3.6 Installation of Primary Reinforcement and Mesh 13.3.3.7 Primary to Secondary Support Installation Sequence 13.3.3.8 Final Ground Support Scheme Arrangement 13.4 Monitoring 13.4.1 Drilling and Blasting 13.4.2 Deformation References Index