دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Dr. Inamuddin (editor), Charles Oluwaseun Adetunji (editor), Mohd Ahamed (editor) سری: ISBN (شابک) : 0323851460, 9780323851466 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 708 [709] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Biomedical Application of Biosurfactant in Medical Sector به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیند سبز پایدار برای مهندسی شیمی و محیط زیست و علوم: کاربرد بیوپزشکی بیوسورفکتانت در بخش پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فرایند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: کاربرد بیوپزشکی بیوسورفکتانت در بخش پزشکی کاربردهای بیشماری بیوسورفکتانتها را در زمینه پزشکی بهویژه به عنوان جایگزینی برای داروهای مصنوعی برجسته میکند. که در طول سال ها چندین سطح مقاومت را ایجاد کرده اند. تاکید ویژه بر کاربرد آنها به عنوان ادجوانت های ایمونولوژیک غیر تب زا و غیر سمی و ویژگی های بازدارندگی آنها در برابر H+، K+، -ATPase و دفاع در برابر زخم معده، همراه با کاربرد عملی آنها به عنوان عوامل پوشش ضد چسب برای مواد درج پزشکی است. این کتاب با ترکیب دانش تولید آنها با اطلاعات در مورد طیف وسیعی از کاربردهای پزشکی به مسائل می پردازد.
این کتاب با تکیه بر دانش تیم متخصص خود از مشارکت کنندگان جهانی، بینش های مفیدی را ارائه می دهد. برای همه کسانی که در حال حاضر یا بالقوه علاقه مند به توسعه یا استفاده از بیوسورفکتانت ها در کار خود هستند.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Biomedical Application of Biosurfactant in Medical Sector highlights the numerous applications of biosurfactants in the field of medicine, especially as a replacement to synthetic drugs which have developed several levels of resistance over the years. Special emphasis is laid on their application as non-pyrogenic and non-toxic immunological adjuvants and their inhibitory characteristics against H+, K+, -ATPase and defense against gastric ulcers, along with their practical application as anti-adhesive coating agents for medical insert materials. The book addresses issues by combining knowledge of their production with information on a range of medical applications.
Drawing on the knowledge of its expert team of global contributors, this book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work.
Front Cover Green Sustainable Process for Chemical and Environmental Engineering and Science Copyright Page Contents List of contributors 1 Application of low molecular weight and high molecular weight biosurfactant in medicine/biomedical/pharmaceutical industries 1.1 Introduction 1.2 High molecular weight biosurfactant 1.2.1 Protein 1.2.2 Polysaccharide 1.2.3 Lipoprotein 1.2.3.1 Lipoprotein lipase in diseases pathology 1.3 Low molecular weight biosurfactant 1.3.1 Glycolipid 1.3.2 Cyclic and acyclic lipopeptides 1.3.3 Trehalose lipid biosurfactant with phospholipid 1.3.4 Lipopeptide 1.3.5 Acetylated acidic sophorolipid 1.4 Conclusions References 2 Application of biosurfactant as an adjuvant in medicine 2.1 Introduction 2.2 Biosurfactant types and structure–activity relationship 2.3 Lipopeptides 2.4 Surfactin and surfactin derived 2.5 Nucleolipids 2.6 Glycolipids 2.7 Full peptides 2.8 Medicinal properties of biosurfactants 2.9 Biosurfactants as antitumor agents 2.10 Biosurfactants as antiviral agents 2.11 Biosurfactants as antibacterial agents 2.12 Biosurfactants as drug-delivery agents 2.13 Biosurfactants as antiadhesive agents 2.14 Biosurfactants as antimicrobial agents 2.15 Biosurfactants: mechanism of interaction 2.16 Conclusion References 3 Applications of biosurfactants in dentistry 3.1 Introduction 3.2 Oral biofilm 3.2.1 Microbial biofilm causing dental caries 3.2.2 Microbial biofilms and its association with periodontal infections and tooth loss 3.2.3 Microbial biofilms and its association with prosthesis and dental implants 3.2.4 Available agents for removal of dental plaque 3.3 Biosurfactants versus synthetic surfactants 3.4 Therapeutic properties of biosurfactants in biomedical field 3.4.1 Antimicrobial properties 3.4.2 Antiadhesive properties 3.4.3 Antibiofilm properties 3.4.4 Anticancer properties 3.4.5 Emulsion-forming properties 3.5 Biosurfactants from lactic acid bacteria strains 3.5.1 Cytotoxic effects of lactic acid bacteria–derived biosurfactants 3.6 Other sources of biosurfactants 3.6.1 Biosurfactants from endophytes 3.6.2 Biosurfactants from Candida 3.6.3 Biosurfactants from Pseudomonas 3.6.4 Biosurfactants from streptococcus 3.7 Applications of biosurfactants in oral health 3.8 Biosurfactants and future goals 3.9 Conclusion References 4 Expansion of targeted drug-delivery systems using microbially sources biosurfactant 4.1 Introduction 4.2 Microbial biosurfactants 4.2.1 Mannosylerythritol lipids 4.2.2 Succinoyl trehalose lipids 4.2.3 Sophorolipids 4.2.4 Rhamnolipids 4.2.5 Surfactin 4.3 Microbial biosurfactants as drug-delivery systems 4.4 Types of biosurfactant-based drug-delivery system 4.4.1 Liposomes 4.4.2 Niosomes 4.4.3 Nanoparticles 4.5 Conclusions and future challenges Acknowledgments References 5 Inhibition of fibrin clot formation 5.1 Introduction 5.2 Coagulation factors and fibrin clot formation 5.3 Consequences of fibrin clot formation 5.4 Inhibition of fibrin clot formation 5.4.1 By enzymes 5.4.2 By using chemical drugs 5.4.3 New drugs 5.5 Biosurfactants as drug 5.6 Conclusion References 6 Application of biosurfactant for the management of tropical and life-threatening diseases 6.1 Introduction 6.2 Framework of the research study 6.2.1 Production of biosurfactants 6.2.2 Extraction of the biosurfactants 6.2.3 Biosurfactant activity tests (confirmation assays)/characterization of biosurfactants 6.2.4 Medicinal application of the biosurfactant 6.3 Tropical and life-threatening diseases 6.4 Application of the biosurfactants against tropical and life-threatening diseases 6.4.1 Viruses based tropical diseases 6.4.2 Bacteria based tropical diseases 6.4.3 Parasites based tropical diseases 6.5 Conclusion Acknowledgments Conflict of interest References 7 Application of biosurfactant for the management of Plasmodium parasites 7.1 Introduction 7.1.1 Application of biosurfactant in an in vitro and in vivo for the management of Plasmodium falciparum vectors 7.2 Environmental application of biosurfactant for the management 7.3 Biology of Plasmodium species 7.4 Conclusion and future recommendation References 8 Role of biosurfactant in the destruction of pores and destabilization of the biological membrane of pathogenic microorganisms 8.1 Introduction 8.2 Modes of action involved in the biological activity of biosurfactants as antipathogen agent 8.3 Modes of action involved in the biological activity of biosurfactants 8.4 The mechanism involved in the biological control of pathogenic microorganisms 8.5 Modes of action involved in the application of biosurfactant 8.6 Modes of action involved in the application of biosurfactant 8.7 Treatment of the parasite using in vivo and in vitro treatments of malaria parasites 8.8 Modes of action involved in the application of biosurfactant for the management of the vector and the parasites 8.9 Conclusion and future recommendation References Further reading 9 Antibacterial and antifungal activities of lipopeptides 9.1 Introduction 9.2 Specific examples of antifungal and antibacterial properties of iturins 9.3 Specific examples of lipopeptides as antibacterial and antifungal agents 9.4 The antiparasitic and antitumor activities of surfactin 9.5 Synthesis, extraction, and purification of biosurfactant 9.6 Physicochemical separation parameters of biosurfactants 9.7 Direct liquid partitioning from cell culture 9.8 Separation by precipitation 9.9 Solvent extraction 9.10 Ammonium sulfate precipitation method 9.11 Zinc sulfate precipitation method 9.12 Acid precipitation method 9.13 Studies on extraction and purification of biosurfactants 9.14 Characterization of biosurfactant 9.15 Fourier transform infrared features of glycolipids 9.16 Fengycin 9.17 Isolation and purification of lipopeptides 9.18 Conclusion and future recommendation References 10 The role of biosurfactants in the advancement of veterinary medicine 10.1 Introduction 10.2 Properties of biosurfactants 10.3 Types of biosurfactants 10.4 Toxicity of biosurfactant 10.5 Potential application of biosurfactants in veterinary field 10.5.1 Antitumor/anticancer effects 10.5.2 Biosurfactants as antimicrobial / antibiofilm agent 10.5.3 Immunomodulatory role of biosurfactants 10.5.4 Biosurfactants in wound healing 10.5.5 Biosurfactants in delivery of veterinary drugs 10.6 Future prospects and conclusion Acknowledgment Conflicts of interest References 11 Applications of surfactin and other biosurfactants in anticancer activity 11.1 Introduction 11.2 Characteristics and mechanism of action of biosurfactants 11.2.1 Characteristics of biosurfactants 11.2.2 Mechanism of action of biosurfactants 11.3 Applications of biosurfactants in anticancer activity 11.4 Applications of surfactin in anticancer activity 11.5 Applications of other biosurfactants in cancer therapy 11.5.1 Iturin 11.5.2 Fengycin 11.5.3 Somocystinamide A 11.5.4 Fellutamides 11.5.5 Pseudofactin 11.5.6 Rakicidin 11.5.7 Apratoxin 11.6 Conclusion References 12 Inhibitory activity of biosurfactants against H+-K+ ATPases and defense against gastric ulcers 12.1 Introduction 12.2 Biosurfactants: potential application as a therapeutic target 12.3 Function of H+/K+-ATPase in gastric ulcer formation 12.4 Efficiency of proton pump inhibitors to treat gastric ulcers 12.5 Pumilacidin: its role in the control of gastric ulcer 12.6 Conclusion References 13 Applications of biosurfactants as nonpyrogenic and nontoxic immunologic adjuvants 13.1 Introduction 13.2 Biological and therapeutic role of biosurfactants 13.3 Immunomodulatory role of biosurfactants 13.4 Biosurfactants and immunologic adjuvants 13.5 Applications of biosurfactants as immunologic adjuvants 13.6 General mechanism of immunologic adjuvant activity 13.6.1 Sustain release of antigen from injection site 13.6.2 Upregulation of cytokines and chemokines and cellular recruitment of immune cells 13.6.3 Increase antigen presentation on antigen-presenting cells 13.6.4 Dendritic cells activation and maturation 13.6.5 Inflammasomes activation References 14 Antifungal activity of biosurfactant against profound mycosis 14.1 Introduction 14.2 Production of biosurfactants 14.2.1 Metabolic pathways/biosynthesis and optimization strategies 14.2.2 Industrial production of biosurfactants 14.2.3 Low-cost substrates in the production of biosurfactants 14.2.4 Downstream processes in the production of biosurfactants 14.3 Properties characterization of the biosurfactants 14.3.1 Physicochemical and structural characterization 14.3.2 Thermal behavior 14.3.3 Antimicrobial or antifungal activity 14.3.4 Functional properties 14.4 Etiological agents of profound mycoses and application of biosurfactants against them 14.4.1 Etiological agent of profound mycoses 14.4.1.1 Systemic candidiasis 14.4.1.2 Pulmonary aspergillosis 14.4.1.3 Paracoccidioido mycosis 14.4.1.4 Coccidioido mycosis 14.4.1.5 Cryptococcosis 14.4.1.6 Histoplasmosis 14.4.1.7 Pneumocystosis 14.4.2 Antifungals 14.4.3 Biosurfactants 14.5 Final considerations References 15 Hemolysis and formation of ion channels in lipid membrane 15.1 Introduction 15.2 Role of biosurfactants 15.3 Classification of surfactants 15.4 Mechanism of hemolysis caused by surfactants 15.5 Role of lipid layer in pore formation and membrane lysis 15.6 Mechanism of pore formation and membrane lysis 15.6.1 The three-stage model by helenius and simons 15.6.2 Modes of membrane disordering 15.7 Applications of biosurfactants 15.8 Structural aspects of biosurfactants playing role in hemolysis and membrane lysis 15.9 Factors influencing pore formation 15.10 Research work on the role of surfactants in hemolysis 15.11 Research on the role of biosurfactants in pore formation and membrane lysis 15.12 Conclusion References 16 Biosurfactant as a vehicle for targeted antitumor and anticancer drug delivery 16.1 Introduction 16.2 Properties of biosurfactant 16.3 Antitumor and anticancer properties of biosurfactants 16.4 Biosurfactants as drug carriers 16.4.1 Microemulsions 16.4.2 Nanoparticles 16.4.3 Vesicles 16.5 Conclusion and future outlook References Further reading 17 Biosurfactants in the pharmaceuticalsciences 17.1 Introduction 17.2 Main uses of surfactants in the pharmaceutical industry 17.3 Biosurfactants 17.4 Reports of biosurfactants employed in the pharmaceutical sector 17.5 Final considerations References 18 Naturally occurring bioactive biosurfactants 18.1 Introduction 18.2 Bioactivity of naturally occurring biosurfactants 18.2.1 Antimicrobial activity 18.2.2 Antifungal activity 18.2.3 Antiviral activity 18.2.4 Antibioflim activity 18.2.5 Anticancer activity 18.2.6 Antitumor activity 18.2.7 Wound healing and antiinflamatory activity 18.2.8 Antimelanogenic activity 18.2.9 Antimycoplasmal activity 18.2.10 Anti-HIV activity 18.2.11 Antithrombotic activity 18.2.12 Antiproliferative activity 18.2.13 Antioxidant activity 18.2.14 Activity against Coronavirus disease 2019 18.2.15 Larvicidal and pupicidal activity 18.3 Conclusions Acknowledgement References 19 Application of biosurfactants in the treatment of Mycobacterium tuberculosis infection 19.1 Introduction 19.2 Biosurfactants 19.2.1 Classification 19.2.1.1 Microbial origin 19.2.1.2 Chemical nature 19.3 Biosurfactant synthesis 19.3.1 Producers 19.3.2 Physiology of production 19.3.3 Factors affecting biosurfactant production 19.4 Properties of biosurfactants 19.5 Mycobacterium tuberculosis 19.5.1 Type and disease caused by Mycobacterium tuberculosis 19.5.2 Pathogenesis 19.5.3 Manifestation 19.5.4 Diagnosis 19.6 Molecular mechanism of Mycobacterium tuberculosis 19.7 Therapeutics of Mycobacterium tuberculosis 19.7.1 Via drugs 19.7.2 Via biosurfactants 19.7.2.1 Antimicrobial activity 19.7.2.2 Immunomodulatory actions 19.8 Future prospective References 20 Biosurfactants role in nanotechnology for anticancer treatment 20.1 Introduction 20.2 Types of biosurfactants 20.2.1 Glycolipids 20.2.2 Lipoproteins/Lipopeptides 20.2.3 Phospholipids 20.2.4 Polymerics 20.2.5 Particulate biosurfactants 20.3 Biosurfactants as surface modifiers 20.3.1 Inorganic nanoparticles 20.3.1.1 Iron oxide nanoparticles 20.3.1.2 Silver nanoparticles 20.3.1.3 Gold nanoparticles 20.3.1.4 Similarly, zinc oxide nanoparticles 20.3.1.5 Carbon nanotubes 20.3.2 Organic nanoparticles 20.3.2.1 Dendrimers 20.4 Role of biosurfactants in cancer therapy 20.4.1 Breast cancer 20.4.2 Lung cancer 20.4.3 Colon cancer 20.4.4 Brain tumor 20.4.5 Leukemia 20.5 Future perspective References 21 Application of low- and high-molecular-weight biosurfactants in medicine/biomedical/pharmaceutical industries 21.1 Introduction 21.2 Classification of biosurfactants 21.2.1 Low-molecular-weight biosurfactants 21.2.1.1 Glycolipids 21.2.1.2 Lipopeptides 21.2.1.3 Phospholipids, fatty acids, and neutral lipids 21.2.2 High-molecular-weight biosurfactants 21.3 Applications of biosurfactant 21.3.1 Applications in the field of medicines 21.3.2 Other applications 21.4 Conclusion References 22 Biosurfactants for pharmacological interventions in cancer therapy 22.1 Introduction 22.2 Types and sources of biosurfactants 22.2.1 Lipopeptides and lipoproteins 22.3 Raw materials used for biosurfactant production 22.4 Biosurfactant with potent anticancer activity against different cancers with mechanism 22.4.1 Breast cancer 22.4.2 Colon cancer 22.4.3 Leukemia 22.5 Biosurfactant-nanoconjugates for cancer treatment 22.6 Biosurfactant-nanoconjugates in diagnosis 22.7 Biosurfactant-nanoconjugates in treatment 22.8 Conclusion and future perspectives Acknowledgment References 23 Biosurfactants in respiratory viruses and the Coronavirus disease 2019 pandemic 23.1 Introduction 23.2 A quick overview of biosurfactants 23.2.1 Definition 23.2.2 Types of biosurfactants 23.2.3 Advantages of biosurfactants 23.2.4 Production and application 23.2.4.1 Sources of biosurfactant production and screening 23.2.4.1.1 Bacteria 23.2.4.1.2 Yeasts 23.2.4.1.3 Filamentous fungi 23.2.4.2 Factors involved in its production 23.2.4.3 Major applications in medicine 23.3 Viruses and biosurfactants 23.3.1 Different classes of viruses 23.3.2 Respiratory viruses and Coronavirus (severe acute respiratory syndrome Coronavirus-2) 23.3.3 Mode of action of biosurfactants on viruses 23.3.4 Different roles of biosurfactants in respiratory viral infections including Coronavirus disease 2019 23.3.4.1 Virucidal effect on enveloped viruses 23.3.4.2 Surfactant in acute respiratory distress syndrome 23.3.4.3 Disinfection and cleaning applications 23.3.4.4 Drug delivery systems, adjuvants, and vaccine development 23.4 Conclusion Acknowledgement References 24 Biosurfactant as an intervention for medical device associated infections 24.1 Introduction 24.2 Nosocomial device-associated infections 24.3 Role of biofilms on device-associated infections 24.4 Role of biosurfactants in biofilm mode of growth 24.5 Application of biosurfactant specific to device-associated infections 24.5.1 Biosurfactants with antiadhesion property 24.5.2 Biosurfactants with antibiofilm property 24.5.2.1 Lipopeptide biosurfactants as antibiofilm agents 24.5.2.2 Polymyxins 24.5.2.3 Fengycin-like lipopeptides 24.5.2.4 Putisolvin 24.5.2.5 Pseudofactin 24.5.2.6 Surfactins 24.5.2.7 Complexes of lipopeptides 24.5.2.8 Rhamnolipids 24.5.2.9 Sophorolipids 24.5.2.10 Other glycolipids with antibiofilm properties 24.5.2.11 Complex surfactant mixtures 24.5.2.12 Biosurfactants from fungi with antibiofilm property 24.5.3 Biosurfactant assisted surface modification to prevent device-associated infections 24.6 Conclusion Acknowledgment References 25 Biosurfactants for industrial applications 25.1 Introduction 25.2 Materials and methods for biosurfactants 25.2.1 Exploring cheap sources/substrate 25.2.2 Manipulating/fine-tuning the manufacturing conditions 25.2.2.1 Carbon source 25.2.2.2 Nitrogen source 25.2.2.3 Solid-state and submerged fermentation 25.2.3 Exploring nonpathogenic microbial strain that produces natural products 25.2.4 Surveying improved low-cost separation and purification methods (multistep downstream processing) 25.2.5 Metabolic and cellular engineering for microbial strain improvement 25.3 Industrial applications of biosurfactant in biomedical area 25.3.1 Biosurfactants for antimicrobial activities 25.3.2 Biosurfactants for antibiofilm 25.3.3 Biosurfactants as antitumor/anticancer agents 25.3.4 Potential applications of biosurfactants in immunomodulatory activities 25.3.5 Potential applications of biosurfactant in gene transfection and drug delivery 25.3.6 Wound healing and dermatological applications 25.4 Conclusion and future perspectives References 26 Antitumor and anticancer activity of biosurfactant 26.1 Introduction 26.2 Anticancer and antitumor activity of biosurfactants 26.2.1 Breast cancer 26.2.2 Melanoma cells 26.2.3 Colon cancer 26.2.4 Hepatoma cancer 26.2.5 Cervical cancer 26.2.6 Human epidermal keratinocyte line 26.2.7 Carcinoma cancer cells 26.2.8 Leukemia cells 26.2.8.1 Induction of paraptosis 26.2.8.2 Inhibition of autophagy progress 26.2.8.3 Induction of apoptosis 26.2.9 Lung cancer cells 26.3 Other biomedical applications 26.3.1 Biosurfactants as antibiofilm agent 26.3.2 Biosurfactants as antimicrobial agent 26.3.3 Biosurfactants in drug delivery 26.4 Conclusion References 27 Biosurfactant as antibiofilm agent 27.1 Introduction 27.2 What is biofilm? 27.2.1 Characteristics of a biofilm formation 27.2.2 Process of biofilm formation 27.2.3 Harmful effects of biofilm 27.2.3.1 Impact on human health 27.2.3.2 Food spoilage 27.2.3.3 Ship biofouling 27.3 Biosurfactants 27.3.1 Types of biosurfactants 27.3.1.1 Glycolipids 27.3.1.2 Phospholipids 27.3.1.3 Polymeric biosurfactants 27.3.1.4 Lipopeptides 27.4 Biosurfactants as antibiofilm agent 27.4.1 Polymyxins biosurfactants as antibiofilm agent 27.4.2 Surfactins as antibiofilm agent 27.4.3 Putisolvin as antibiofilm agent 27.4.4 Pseudofactin as antibiofilm agent 27.4.5 Rhamnolipids as antibiofilm agent 27.4.6 Sophorolipids as antibiofilm agent 27.5 Conclusion References 28 Rheological behavior of biosurfactants 28.1 Introduction 28.2 Brief introduction on biosurfactants 28.3 Rheological properties of some biosurfactants and their systems 28.3.1 Rheology of emulsions 28.3.2 Rheology of foams and biofilms 28.3.3 Rheology of solutions 28.4 Conclusions References 29 Biosurfactants for optimal delivery of poorly soluble therapeutic agents 29.1 Introduction 29.2 Biosurfactants: important component in pharmaceutical products 29.3 Potential advantages of biosurfactants 29.3.1 Biodegradability 29.3.2 Low toxicity 29.3.3 Cost-effectiveness 29.3.4 Temperature and pH tolerance 29.3.5 Surface and interface activity 29.4 Classification of biosurfactants 29.4.1 Glycolipids 29.4.2 Lipopeptides 29.4.3 Fatty acids 29.4.4 Polymeric biosurfactants 29.4.5 Phospholipid 29.5 Biosurfactants for delivery of poorly soluble drugs 29.6 Concluding remarks References 30 Role of surfactants in pulmonary drug delivery 30.1 Introduction 30.2 Pulmonary diseases management: therapies and interventions 30.3 Surfactants: properties and applications 30.4 Biosurfactants: source, properties, and purpose 30.5 Applications of biosurfactants in pulmonary diseases 30.6 Clinical trial perspective 30.7 Conclusion References 31 Antioxidant activity of biogenic surfactants 31.1 Biosurfactants 31.2 Properties of biosurfactants 31.2.1 Critical micelle concentration 31.2.2 Surface and interfacial properties 31.2.3 Temperature and pH tolerance 31.2.4 Biodegradability and low toxicity 31.2.5 Emulsification 31.3 Classification and chemical nature of biosurfactants 31.3.1 Glycolipids 31.3.1.1 Rhamnolipids 31.3.1.2 Trehalose lipids 31.3.1.3 Sophorolipids 31.3.2 Lipopeptides and lipoproteins 31.3.3 Polymeric and particulate biosurfactants 31.3.4 Fatty acid, phospholipids, and neutral lipids 31.4 Biosurfactant production 31.4.1 Substrates used for commercial biosurfactant production [27] 31.4.1.1 Agricultural waste 31.4.1.2 Dairy industry whey 31.4.1.3 Industrial waste 31.4.1.4 Vegetable oils 31.4.2 Factors affecting the production of biosurfactants 31.4.2.1 Nutrient sources and salt concentration 31.4.2.2 Environmental factors 31.4.3 Extraction of biosurfactants 31.4.4 Purification of biosurfactants 31.4.4.1 Thin-layer chromatography 31.4.4.2 Dialysis 31.4.4.3 Isoelectric focusing 31.5 Characterization of biosurfactants 31.6 Applications of biosurfactants 31.6.1 Application in cosmetic industry 31.6.2 Application in laundry industry 31.6.3 Application in petroleum 31.6.4 Application in microbial enhanced oil recovery 31.6.5 Application in food processing industry 31.6.6 Application in agriculture 31.6.7 Pharmaceutical applications 31.7 Antioxidants 31.7.1 Source of antioxidants 31.7.2 Types of antioxidants 31.7.3 Classification 31.8 Methods for evaluation of antioxidant activity 31.8.1 1-Diphenyl-2-picryl hydrazyl scavenging activity 31.8.2 Trolox equivalent antioxidant capacity method/ABTS radical cation decolorization assay 31.8.3 Hydrogen peroxide scavenging assay 31.8.4 Ferric reducing antioxidant power assay 31.8.5 Reducing power method 31.8.6 Superoxide radical scavenging activity 31.8.7 Ferric thiocyanate method 31.8.8 Phosphomolybdenum method 31.8.9 Hydroxyl radical scavenging activity 31.8.10 Metal chelating activity 31.8.11 ß-carotene linoleic acid method/conjugated diene assay 31.9 Biosurfactants and their antioxidant property 31.10 Conclusion References 32 Recent advances in biosurfactant as antiadhesion/antibiofilm agents 32.1 Introduction 32.2 Microbial biofilm formation 32.3 Biosurfactant as antiadhesive agent 32.4 Biosurfactant as antibiofilm agent 32.5 Conclusion and future prospects References 33 Current trends in the application of biosurfactant in the synthesis of nanobiosurfactant such as engineered biomolecules... 33.1 Introduction 33.2 Microbial synthesis of biosurfactants 33.2.1 Applications of biosurfactants 33.2.2 Role of biosurfactants in biosynthesis of nanoparticles 33.3 Conclusion References 34 Application of biosurfactants in the food industry: supply chain and green economy perspectives 34.1 Introduction 34.1.1 Classification of biosurfactants 34.1.2 Biosurfactant properties 34.1.2.1 The surface and interfacial activity 34.1.2.2 pH, temperature, and tolerance to ionic strength 34.1.2.3 Biodegradability 34.1.2.4 Low toxicity and availability 34.1.2.5 Emulsification and demulsification 34.1.2.6 Antimicrobial activity 34.2 Methodology 34.3 Biosurfactant production from food and agro-waste 34.4 Potential food applications of biosurfactants 34.4.1 Antioxidants and antiadhesives 34.4.2 Salad dressings 34.4.3 Ice cream and bakery products 34.4.4 Emulsifying and stabilizing agents 34.4.5 Food additives and flavoring agents 34.5 Discussion and analysis 34.5.1 Techno-economic challenges 34.5.2 Supply chain framework 34.5.3 Green economy perspectives 34.6 Conclusion Acknowledgment References 35 Understanding mechanisms underlying genes regulating the production of biosurfactant 35.1 Introduction 35.2 Mechanism of working of biosurfactants 35.3 Enhancing the surface area of water-insoluble hydrophobic substances 35.4 Increasing biological availability of water-insoluble substances 35.5 Molecular genetic mechanisms of microbial synthesis of biosurfactants 35.5.1 Phospholipids and fatty acids (mycolic acids) biosurfactants 35.5.2 Lipoproteins or lipopeptides biosurfactants 35.5.2.1 Surfactin 35.5.2.2 Lichenysin 35.5.2.3 Iturin 35.5.2.4 Arthrofactin 35.5.2.5 Viscosin 35.5.2.6 Amphisin 35.5.2.7 Putisolvin 35.5.2.8 Serrawettin 35.5.3 Glycolypid biosurfactants 35.6 Gene regulation in fungal biosurfactants 35.7 Molecular engineering facets for novel and customized biosurfactants 35.8 Commercial applications of biosurfactants 35.8.1 Biosurfactants in food industry 35.8.2 Biomedical and therapeutic applications of biosurfactants 35.9 Toxicological and ecological aspects of biosurfactants 35.10 Bioremediation using biosurfactants 35.11 Conclusion 35.12 Acknowledgments 35.13 Conflict of interest References Further reading Index Back Cover