دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Inamuddin. Tariq Altalhi
سری:
ISBN (شابک) : 0323951562, 9780323951562
ناشر: Elsevier
سال نشر: 2023
تعداد صفحات: 472
[473]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: حلالهای سبز و فناوری استخراج نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علم: حلالهای سبز و فناوری استخراج اطلاعاتی در مورد استفاده از حلالهای سبز ارائه میدهد و انواع حلالهای سبز را همراه با کاربردها در سنتز داروهای دارویی، تبدیل انرژی، و ذخیرهسازی، کاتالیزور، بیودیزل مورد بحث قرار میدهد. سنتز، واکنشهای چند جزئی، ارزشگذاری زباله، و غیره. این کتاب شامل فصلهای مقدماتی مرتبط با کاربرد حلالهای سبز برای توسعههای پایدار، روندهای تحقیقاتی، توسعه فنی، مسائل زیستمحیطی و نگرانیهای مرتبط است. استفاده از فناوری استخراج برای توسعه پایدار، از جمله استخراج نانوسلولز از ضایعات کشاورزی، استخراج پلی ساکاریدها، استخراج فنولیک، استخراج آنتی اکسیدان ها از سبزیجات، استخراج بیومولکول ها، استخراج حلال های سبز از زیست توده، و استخراج فلزات گرانبها با استفاده از حلال های سبز مورد بحث قرار می گیرد. مروری بر کاربرد حلالهای سبز برای توسعه پایدار ارائه میکند ادبیات عمیق دلورز در مورد استفاده از حلالهای سبز برای فرآیندهای صنعتی موارد برجسته مربوط به روند تحقیقات، توسعه پایدار و محیطزیست تمرکز بر فناوری استخراج مروری کلی از استفاده را ارائه میکند. استخراج مبتنی بر حلال سبز ادبیات عمیقی را در مورد استخراج انواع مواد با استفاده از حلال های سبز ارائه می کند.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology provides information on the use of green solvents and discusses a variety of green solvents together with applications in the synthesis of pharmaceutical drugs, energy conversion, and storage, catalysis, biodiesel synthesis, multicomponent reactions, waste valorisation, etc. The book comprises introductory chapters related to the applications of green solvents for sustainable developments, research trends, technical development, environment issues, and related concern. It discusses the application of extraction technology for sustainable development, including extraction of nanocellulose from agricultural wastes, polysaccharides extraction, extraction of phenolic, antioxidants extraction from vegetable, extraction of biomolecules, green solvents extractions from biomass, and extraction of precious metals using green solvents. Provides an overview of the applicability of green solvents for sustainable development Delvers in-depth literature on the use of green solvents for industrial processes Highlights issues related to research trends, sustainable development, and the environment Focuses on the extraction technology Offers an overview of the use of green solvent-based extraction Presents in-depth literature on the extraction of a variety of substances using green solvents
Cover Contributors CONTENTS Chapter 1 - Utilization of green solvents for synthesis of biodiesel 1.1 Introduction 1.2 Feedstocks 1.2.1 Conventional feedstocks for production of biodiesel 1.2.2 Green feedstocks for production of biodiesel 1.2.2.1 Algae: feedstock for biodiesel production 1.3 Biodiesel production technologies 1.3.1 Utilization of conventional catalysts 1.3.2 Utilization of green catalysts 1.4 Biodiesel reaction medium 1.4.1 Possible conventional organic solvents 1.4.2 Green solvents for production of biodiesel 1.4.2.1 Supercritical carbon dioxide 1.4.2.2 Ionic liquids 1.4.2.3 Deep eutectic solvents 1.5 Conclusions References Chapter 2 - Chemistry of ionic liquids in multicomponent reactions 2.1 Introduction 2.2 Three-component reactions using ionic liquids as solvents 2.3 Three-component reactions using ionic liquids as catalysts 2.4 Four-component reactions in ionic liquids as solvents 2.5 Four-component reactions in ionic liquids as catalysts 2.6 Solid support ionic liquids 2.7 Biodegradable ionic liquids 2.8 Ionic liquids in nanoform 2.9 Conclusion Abbreviations References Chapter 3 - Green solvents in polymer synthesis 3.1 Introduction 3.2 Ionic liquids 3.2.1 Radical polymerization in ionic liquids 3.2.1.1 Free radical polymerization 3.2.1.2 Controlled radical polymerizations in ionic liquids 3.2.1.2.1 Atom transfer radical polymerization 3.2.1.2.2 Reversible addition–fragmentation chain transfer polymerization 3.2.2 Metathesis polymerizations in ionic liquids 3.2.2.1 Ring-opening polymerizations 3.2.2.2 Cationic ring-opening polymerizations 3.2.3 Anionic/cationic polymerizations in ionic liquids 3.2.4 Polycondensation in ionic liquids 3.3 Supercritical carbon dioxide 3.3.1 Polymerization reactions in supercritical carbon dioxide 3.3.2 Polycondensation reactions in supercritical carbon dioxide 3.4 Polymerization reactions in water 3.4.1 Homogenous radical polymerization reactions 3.4.2 Heterogeneous radical polymerization systems 3.5 Conclusions References Chapter 4 - Click reaction in micellar media: A green and sustainable approach toward 1,2,3-triazoles synthesis 4.1 Introduction 4.1.1 An overview on solvent and its impact 4.1.2 In-water and on-water reactions 4.2 Amphiphiles—a brief idea 4.2.1 Different classes of amphiphiles 4.2.1.1 Surfactants 4.2.1.2 Micelles 4.2.1.3 Vesicles and Langmuir monolayers 4.2.2 Characterization of micellar system 4.2.3 Use of surfactants in catalysis 4.3 Click reaction 4.3.1 An overview 4.3.2 Classification of click reaction 4.3.2.1 Cycloadditions 4.3.2.2 Nucleophilic ring-openings 4.3.2.3 Carbonyl chemistry of the nonaldol type 4.3.2.4 Additions to carbon–carbon multiple bonds 4.3.3 Micelle promoted click reaction 4.3.3.1 Cu catalyzed azide–alkyne cycloaddition (CuAAC) reaction under micellar media 4.3.3.2 Click reaction enabled by Cu nanoparticles (CuNPs) in micellar media 4.3.3.3 Micelle promoted multicomponent click reaction 4.3.3.4 Copper-free micelle promoted click reaction 4.3.3.5 Micelle catalyzed strain promoted azide–alkyne cycloaddition 4.4 Conclusions References Chapter 5 - Industrial application of green solvent for energy conversion and storage 5.1 Introduction 5.2 Green solvents 5.2.1 Water 5.2.2 Solvent-free conditions 5.2.3 Ionic liquids 5.2.4 Supercritical carbon dioxide 5.2.5 Supercritical water 5.3 Applications 5.3.1 Energy conversion 5.3.2 Energy storage 5.4 Conclusion References Chapter 6 - Applications of ionic liquids as green solvents in enhanced oil recovery 6.1 Introduction 6.2 Properties of ionic liquids 6.3 Ionic liquids in enhanced oil recovery 6.3.1 Reduction of interfacial tension 6.3.2 Alteration of wettability by ionic liquids 6.3.3 Adsorption onto reservoir rock surface 6.3.4 Phase behaviors of ionic liquid microemulsions 6.3.5 Ionic liquids in additional oil recovery 6.4 Advantages and disadvantages of ionic liquids 6.5 Future prospects and challenges 6.6 Summary and conclusions Acknowledgments References Chapter 7 - Solvation within deep eutectic solvent-based systems: A review 7.1 Introduction 7.2 Spectroscopy within DESs 7.3 Polarity of and solvation within DES-based systems 7.3.1 Neat DESs 7.3.2 Cosolvent-modified DESs 7.3.3 Carbon dioxide capture within DESs 7.5 Thermosolvatochromism within DES-based systems 7.6 Conclusion Acknowledgments References Chapter 8 - Introductory chapter: Understanding green chemistry principles for extraction of green solvents 8.1 Introduction 8.2 Basic green chemistry principles 8.2.1 Waste prevention: plan ahead and select appropriate chemical reagents and processes so as to minimize or prevent waste 8.2.2 Atom economy: design chemical processes to utilize the maximum number of atoms while making up the final product, th ... 8.2.3 Formulating less hazardous chemical synthesis 8.2.4 Design safer chemicals and products: minimize toxicity at the molecular level throughout the chemical process and ma ... 8.2.5 Use of safer solvents and auxiliary chemicals: the selection of solvents and other ancillary chemical substances sho ... 8.2.6 Designing energy-efficient techniques: operate the chemical processes at ambient temperature and pressure and incorp ... 8.2.7 Use of renewable feedstocks: promote the use of renewable feed materials wherever possible rather than using depleti ... 8.2.8 Reduce/avoid the use of derivatives: avoid or minimize the unnecessary chemical modifications such as blocking/prote ... 8.2.9 Promote catalysts: enable the use of catalysts in the chemical process wherever possible rather than the use of stoi ... 8.2.10 Design for degradation: design and develop the chemical products in such way that they are broken down easily into ... 8.2.11 Monitor and control pollution in real-time: monitor the chemical processes in real-time so as to identify the relea ... 8.2.12 Minimize the risk of accidents: design and develop chemical procedures so as to minimize the occurrence of accident ... 8.3 Conclusions Abbreviations References Chapter 9 - Ionic liquids for phenolic compounds removal and extraction 9.1 Introduction 9.2 Physicochemical properties of phenols 9.3 Faith and degradation of phenols 9.4 Reactivity of phenolic compounds in aquatic system 9.5 Toxicity of phenolic compounds 9.6 Methods for the phenolic compounds removal 9.6.1 Adsorption 9.6.2 Chemical oxidation process 9.6.3 Catalytic wet air oxidation process 9.6.4 Fenton and electro‐Fenton method 9.6.5 Membrane separation technique 9.6.6 Biological treatment technique 9.6.7 Extraction method 9.6.7.1 Method of solid-phase extraction 9.6.7.2 Liquid–liquid extraction using ionic liquid solvents 9.7 Conclusions References Chapter 10 - Recovery of natural polysaccharides and advances in the hydrolysis of subcritical, supercritical water and eu ... 10.1 Introduction 10.2 Importance and applications of natural polysaccharides 10.3 Main techniques for polysaccharides extraction 10.3.1 Hot water extraction 10.3.2 Chemical extraction (alkaline and acid solution) 10.3.3 Enzyme-assisted, ultrasound, and microwave extraction methods 10.4 Extraction of polysaccharides with subcritical and supercritical fluid 10.4.1 Subcritical and supercritical water 10.4.2 Process temperature increases extraction yield 10.4.3 Pressure contributes to the medium acidification 10.4.4 Viscosity and diffusivity affect solubility 10.4.5 Extraction mechanisms 10.5 Polysaccharides extraction, pretreatment, and modifications with eutectic solvents 10.6 Hydrolysis of polysaccharides with subcritical, supercritical water, and eutectic solvents 10.6.1 Biomass hydrolysis with subcritical, supercritical water, and deep eutectic solvents 10.6.2 Hydrolysis kinetics may increase degradation products production 10.6.3 Fundamentals of lignocellulosic biomass hydrolysis 10.7 Conclusive observations Additional reading Author contributions Ethical approval Declaration of competing interest Acknowledgment References Chapter 11 - Green strategies for extraction of nanocellulose from agricultural wastes—Current trends and future perspectives 11.1 Introduction 11.2 Agricultural waste—a major source of cellulose 11.2.1 Cellulose 11.2.2 Nanocellulose 11.3 Green approach for extraction of nanocellulose 11.3.1 Mechanical methods 11.3.1.1 Ultrafine friction grinding/supermass colloider 11.3.1.2 High-intensity ultrasonication 11.3.1.3 Cryocrushing 11.3.1.4 Twin screw extrusion 11.3.1.5 Ball milling 11.3.2 Pressure-induced methods 11.3.2.1 Steam explosion 11.3.2.2 High pressure homogenization 11.3.2.3 Microfluidization 11.3.2.4 Aqueous counter collision 11.3.2.5 Subcritical water method 11.3.3 Enzyme-assisted process 11.3.3.1 Static culture method 11.3.3.2 Stirred culture method 11.3.4 Green catalyst strategies 11.3.4.1 Using phosphotungstic acid 11.3.4.2 Using Preyssler heteropolyacids 11.3.4.3 Ionic liquids as effective solvent 11.3.4.4 Organoclick strategy 11.3.5 One pot green synthesis 11.3.6 Deep eutectic solvent method 11.3.7 Ammonium persulfate oxidation 11.3.8 (2,2,6,6-Tetramethylpiperidin-1-oxyl)-mediated oxidation 11.3.9 American value-added pulping technology 11.4 Application of nanocellulose 11.5 Conclusions and future scope Acknowledgments References Chapter 12 - Antioxidants extraction from vegetable matrices with green solvents 12.1 Introduction 12.2 Antioxidants 12.3 Antioxidant extraction techniques with green solvents 12.3.1 Supercritical fluid extraction 12.3.2 Subcritical Water Extraction 12.3.3 Pressurized liquid e xtraction 12.3.4 Microwave-assisted extraction 12.3.5 Ultrasound-assisted extraction 12.4 Main methods for in vitro antioxidant activity quantification 12.4.1 TEAC method 12.4.2 FRAP method 12.4.3 DPPH method 12.4.4 ORAC method 12.5 Considerations Acknowledgments References Chapter 13 - Green methods for extraction of biomolecules 13.1 Introduction 13.2 Carbohydrates extraction 13.2.1 Pressurized liquid extraction 13.2.2 Supercritical fluid extraction 13.2.3 Enzyme-associated extraction 13.2.4 Microwave-assisted extraction 13.3 Protein extraction 13.3.1 Gel electrophoresis 13.3.2 Affinity chromatography 13.3.3 Salting out technique 13.3.4 Gel filtration chromatography 13.3.5 Isoelectric focusing 13.4 Lipid extraction 13.4.1 Folch’s method 13.4.2 Bligh and Dyer method 13.4.3 Bume method 13.4.4 MTBE method 13.5 Nucleic acid extraction 13.5.1 Alkaline extraction 13.5.2 Cesium chloride gradient centrifugation with ethidium bromide 13.5.3 CATB extraction 13.5.4 Chelex extraction 13.5.5 Silica materials 13.5.6 Diatomaceous earth 13.5.7 Magnetic bead-based method 13.6 Anions-exchange materials 13.6.1 Glass particles 13.7 Conclusion Summary Conflict of interest References Chapter 14 - Extraction of phenolic compounds 14.1 Introduction 14.2 Chemistry of phenolic compounds 14.3 Factors affecting extraction of phenolic compounds 14.3.1 Nature and concentration of solvent 14.3.2 Time 14.3.3 Temperature 14.3.4 Solid to solvent ratio 14.4 Extraction techniques of phenolic compounds 14.4.1 Conventional extraction techniques 14.4.1.1 Maceration 14.4.1.2 Decoction 14.4.1.3 Infusion 14.4.1.4 Soxhlet 14.4.1.5 Percolation 14.4.2 Nonconventional extraction techniques 14.4.2.1 Microwave-assisted extraction 14.4.2.2 Ultrasound-assisted extraction 14.4.2.3 Accelerated solvent extraction 14.4.2.4 Supercritical fluid extraction 14.4.2.5 Pulsed-electric field extraction 14.4.2.6 Enzyme-assisted extraction 14.5 Conclusion References Chapter 15 - Extraction of phenolic compounds by conventional and green innovative techniques 15.1 Introduction 15.2 Classification and properties of phenolic compounds 15.3 Conventional extraction methods 15.3.1 Soxhlet or hot continuous extraction 15.3.2 Maceration 15.3.3 Percolation 15.3.4 Decoction 15.3.5 Hydrodistillation 15.3.6 Reflux extraction 15.4 Concept of green technologies 15.4.1 Modern extraction methods 15.4.1.1 Ultrasound-assisted extraction 15.4.1.2 Microwave-assisted extraction 15.4.1.3 Supercritical fluid extraction 15.4.1.4 Subcritical water extraction 15.4.1.5 Pressurized liquid extraction 15.4.1.6 Pulsed electric field extraction 15.4.1.7 High hydrostatic pressure extraction 15.5 Conclusion and future perspectives References Chapter 16 - Application of ionic liquids for extraction of phenolic compounds and dyes: A critical review 16.1 Introduction 16.1.1 Dyes 16.1.2 Phenolic compounds 16.2 Determination of dyes and phenolic compounds in various matrices 16.2.1 Ionic liquids in extraction methods 16.2.1.1 Ionic liquid-assisted liquid–liquid extraction of dyes and phenolic compounds 16.2.1.2 Ionic liquid-assisted solid phase extraction of dyes and phenolic compounds 16.2.1.3 Ionic liquid in biphasic extraction methods 16.3 Summary 16.4 Conclusion Acknowledgments References Chapter 17 - Green methods for extraction of phenolic compounds 17.1 Introduction 17.2 Methods of extractions of phenolic compounds 17.2.1 Liquid–liquid extraction 17.2.2 Solid-phase extraction 17.2.3 Supercritical fluid extraction 17.2.4 Pressurized liquid extraction 17.2.5 Microwave-assisted extraction 17.2.6 Ultrasound-assisted extraction 17.3 Conclusion 17.4 Summary Conflict of interest References Chapter 18 - Current prospective of green chemistry in the pharmaceutical industry 18.1 Introduction 18.2 Design of green chemistry 18.2.1 Choice of starting material 18.2.1.1 Choice of reagent 18.2.2 Choice of solvent 18.2.3 Choice of catalyst 18.3 Applications of green chemistry in pharmaceuticals 18.3.1 Green solvents 18.3.2 Green catalyst 18.3.3 Waste water treatment 18.3.4 Safer chemical 18.3.5 Renewable feedstock 18.3.6 Synthesis of carbon dots 18.3.6.1 Organic solvent recovery 18.3.7 Separation of natural products from agrochemical 18.3.8 Sonochemistry 18.3.9 Green chemistry considerations in APIs 18.3.9.1 Atorvastatin 18.3.9.2 Montelukast 18.4 Conclusion Acknowledgments Abbreviations References Index