دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک: ارتباطات از راه دور ویرایش: نویسندگان: Himal A Suraweera, Jing Yang, Alessio Zappone, John S Thompson سری: IET Telecommunications Series, 91 ISBN (شابک) : 1839530677, 9781839530678 ناشر: Institution of Engineering & Technology سال نشر: 2021 تعداد صفحات: 477 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Green Communications for Energy-Efficient Wireless Systems and Networks (Telecommunications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتباطات سبز برای سیستم ها و شبکه های بی سیم با بهره وری انرژی (ارتباطات از راه دور) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
صنعت ICT مصرف کننده عمده انرژی جهانی است. بحران انرژی، مشکلات گرمایش زمین، رشد چشمگیر ترافیک داده و افزایش پیچیدگی شبکههای نوظهور، تحقیقات دانشگاهی و صنعتی را به سمت توسعه معماری، فناوریها و شبکههای صرفهجویی در مصرف انرژی و انرژی به منظور کاهش ردپای کربن سوق میدهد. تضمین شبکه های ارتباطی کارآمد و قابل اعتماد و پایداری محیطی. راهحلهای جذاب برای طراحی و اجرای شبکههای بیسیم کارآمد انرژی و فناوریهای 5G شامل MIMO عظیم، دسترسی چندگانه غیرمتعامد، و ارتباطات جمعآوری انرژی است. ابزارهایی از حوزه هایی مانند یادگیری ماشینی و عمیق برای ایجاد رویکردهای بهینه و درک محدودیت های اساسی در حال بررسی هستند. علاوه بر این، معماریهای شبکه ناهمگن و غیرمتمرکز امیدوارکننده جدید و اینترنت اشیا (IoT) بر اجرای موفقیتآمیز ارتباطات بیسیم سبز آینده و نسل بعدی تأثیر خواهند داشت.
هدف این کتاب ویرایش شده است. ارائه تحقیقات پیشرفته از تئوری تا عمل، و تمام جنبه های روش ها و فن آوری های ارتباط سبز برای طراحی نسل بعدی سیستم ها و شبکه های ارتباطی بی سیم سبز. این عنوان تحقیقاتی پیشرفته مورد توجه مخاطبانی از محققان، مهندسان، دانشمندان و توسعه دهندگان دانشگاهی و صنعتی خواهد بود که در زمینه های ICT، پردازش سیگنال، شبکه، سیستم های قدرت و انرژی، مهندسی زیست محیطی و پایدار، حسگر و الکترونیک کار می کنند. همچنین متن بسیار مفیدی برای اساتید، فوق دکترا، دکترا و دانشجویان کارشناسی ارشد خواهد بود که در مورد طراحی نسل بعدی سیستمها و شبکههای ارتباطی بیسیم تحقیق میکنند.
The ICT industry is a major consumer of global energy. The energy crisis, global warming problems, dramatic growth in data traffic and the increased complexity of emerging networks are pushing academic and industry research towards the development of energy-saving and energy-efficient architectures, technologies and networks in order to reduce the carbon footprint while ensuring efficient and reliable communication networks, and environmental sustainability. Attractive solutions for the design and implementation of energy efficient wireless networks and 5G technologies include massive MIMO, non-orthogonal multiple access, and energy harvesting communications. Tools from areas such as machine and deep learning are being investigated to establish optimal approaches and understand fundamental limits. Moreover, new promising heterogeneous and decentralized network architectures and the Internet-of-Things (IoT) will have an impact on the successful implementation of future and next generation green wireless communications.
The aim of this edited book is to present state-of-the art research from theory to practice, and all aspects of green communication methods and technologies for the design of next generation green wireless communication systems and networks. This advanced research title will be of interest to an audience of researchers, engineers, scientists and developers from academia and the industry working in the fields of ICTs, signal processing, networking, power and energy systems, environmental and sustainable engineering, sensing and electronics. It will also be a very useful text for lecturers, postdocs, PhD and masters students researching the design of the next generation wireless communication systems and networks.
Cover Contents About the editors 1 Introduction 1.1 Energy-efficient resource allocation 1.1.1 Energy-efficient performance metrics 1.1.2 Energy-efficient resource allocation methods 1.2 Network design and deployment 1.2.1 Dense networks 1.2.2 Base station on/off switching 1.2.3 Massive MIMO 1.2.4 mmWave cellular systems 1.2.5 Cloudification and virtualization 1.2.6 Offloading techniques 1.3 Energy harvesting communications 1.3.1 Information-theoretic characterization of energy harvesting channels 1.3.2 Offline energy management for throughput maximization 1.3.3 Online energy management for performance optimization 1.3.4 Routing and resource allocation in multi-hop energy harvesting networks 1.4 Efficient hardware design 1.5 Overview of the textbook References Part I. Mathematical tools for energy efficiency 2 Optimization techniques for energy efficiency 2.1 Introduction and motivation 2.1.1 Motivating single-link examples 2.1.2 Interference networks with treating interference as noise 2.1.3 Overview and outline 2.1.4 Notation 2.2 Fractional programming theory 2.2.1 Pseudo-concavity 2.2.2 Specific fractional programming problems 2.2.3 Dinkelbach’s Algorithm 2.2.4 Variants of Dinkelbach’s Algorithm 2.3 Global optimization 2.3.1 Branch and bound 2.3.2 Bounding methods 2.3.3 Feasibility test 2.3.3.1 Box constraints 2.3.3.2 Minimum rate constraints 2.3.3.3 General inequality constraints 2.4 Successive incumbent transcending scheme 2.4.1 ε-Essential feasibility and the SIT scheme 2.4.2 SIT for fractional DI problems with some convex variables 2.5 Sequential convex approximation 2.6 Conclusions 2.6.1 Further reading References 3 Deep learning for energy-efficient beyond 5G networks 3.1 Introduction 3.1.1 AI-based wireless networks 3.2 Integration into wireless networks: smart radio environments 3.2.1 The role of deep learning in smart radio environments 3.2.2 ANNs deployment into wireless networks 3.3 State-of-the-art review 3.4 Energy efficiency optimization by deep learning 3.4.1 Weighted sum energy efficiency maximization 3.4.2 Energy efficiency in non-Poisson wireless networks: a deep transfer learning approach 3.5 Conclusions References 4 Scheduling resources in 5G networks for energy efficiency 4.1 Introduction 4.2 Preliminaries 4.2.1 Energy efficiency metrics and objectives 4.2.2 A primer on convex optimization 4.2.3 Sensors and their measurements 4.3 The proposed scheduling algorithm 4.3.1 The mathematical model: the measurements 4.3.2 The mathematical model: the network 4.3.3 Scheduling for a single time instance 4.3.4 Scheduling for multiple time instances 4.3.5 Adaptive scheduling for multiple time instances 4.3.6 The proposed algorithm 4.4 Experimental results 4.4.1 Scheduling without sensor failures 4.4.2 Scheduling with sensor failures 4.5 Conclusions References Part II. Renewable energy and energy harvesting 5 Renewable energy-enabled wireless networks 5.1 Introduction 5.2 Renewable energy to pursue mobile operator goals 5.2.1 Renewable energy production variability 5.2.2 The problem of uncoupled traffic demand and solar energy production 5.2.3 Traffic load and BS energy consumption 5.3 Scenarios 5.3.1 On-grid BSs in an urban environment and reliable power grid 5.3.2 Off-grid or on-grid BSs with unreliable power grid 5.3.3 Green mobile networks in the smart grid 5.4 Challenges, critical issues, and possible solutions 5.4.1 PV system dimensioning 5.4.2 System operation and management 5.4.3 Interaction with the smart grid 5.5 Some case studies 5.5.1 Photovoltaic system dimensioning 5.5.2 System operation and management 5.5.3 Interaction with the smart grid 5.6 Conclusion References 6 Coverage and secrecy analysis of RF-powered Internet-of-Things 6.1 Introduction 6.1.1 Literature review 6.2 RF-energy harvesting from a coexisting cellular network 6.2.1 System setup 6.2.2 Performance metrics 6.2.3 Analysis and main results 6.2.4 Numerical results and discussion 6.3 RF-energy harvesting from a coexisting, secrecy-enhancing network 6.3.1 System setup 6.3.2 Performance metrics 6.3.3 Analysis and main results 6.3.4 Numerical results and discussion 6.4 Summary Acknowledgment References 7 Backscatter communications for ultra-low-power IoT: from theory to applications 7.1 BackCom basic principle 7.1.1 Architecture 7.1.2 Modes and modulation 7.1.3 Design parameters 7.1.3.1 Operating frequency 7.1.3.2 Impedance matching 7.1.3.3 Antenna gain 7.1.3.4 Polarization 7.1.4 Standardization 7.2 BackCom networks 7.2.1 BackCom networks 7.2.1.1 Monostatic BackCom networks 7.2.1.2 Bistatic BackCom networks 7.2.2 Multi-access BackCom network 7.2.3 Interference BackCom network 7.3 Emerging backscatter communication technologies 7.3.1 Ambient BackCom 7.3.2 Wirelessly powered BackCom 7.3.3 Full-duplex BackCom 7.3.4 Visible-light-BackCom 7.3.5 BackCom system with technology conversion 7.4 Performance enhancements of backscatter communication 7.4.1 Waveform design 7.4.1.1 Single-tag case 7.4.1.2 Multi-tag case 7.4.2 Multi-antenna transmissions 7.4.2.1 Space-time coding 7.4.3 Energy beamforming 7.5 Applications empowered by backscatter communications 7.5.1 BackCom-assisted positioning 7.5.2 Smart home and cities 7.5.3 Logistics 7.5.4 Biomedical applications 7.6 Open issues and future directions 7.6.1 From wireless information and power transmission to BackCom 7.6.2 Security and jamming issues 7.6.3 mmWave-based BackCom Acknowledgment References 8 Age minimization in energy harvesting communications 8.1 Introduction: the age-of-information (AoI) 8.1.1 Status updating under energy harvesting constraints 8.1.1.1 Summary of related works 8.1.1.2 Categorization 8.1.2 Chapter outline and focus 8.2 Status updating over perfect channels 8.2.1 The case B=∞ 8.2.2 The case B=1 8.2.3 The case B < ∞ 8.2.3.1 Renewal state analysis 8.2.3.2 Multi threshold policy 8.3 Status updating over erasure channels 8.3.1 The case B=∞ 8.3.1.1 Updating without feedback 8.3.1.2 Updating with perfect feedback 8.3.2.2 Updating with perfect feedback 8.4 Conclusion and outlook References Part III. Energy-efficient techniques and concepts for future networks 9 Fundamental limits of energy efficiency in 5G multiple antenna systems 9.1 A primer on energy efficiency 9.1.1 Organization 9.1.2 Notation 9.2 Massive MIMO 9.2.1 What is massive MIMO? 9.2.2 A simple network model 9.2.3 Spectral efficiency 9.3 Energy efficiency analysis 9.3.1 Zero circuit power 9.3.2 Constant but nonzero circuit power 9.3.3 Impact of BS antennas 9.3.4 Varying circuit power 9.3.5 Impact of interference 9.3.6 Summary of Section 9.3 9.4 State of the art on energy efficiency analysis 9.4.1 Impact of cooperation 9.4.2 Impact of imperfect channel knowledge 9.4.3 Impact of spatial correlation 9.4.4 Impact of densification References 10 Energy-efficient design for doubly massive MIMO millimeter wave wireless systems 10.1 Introduction 10.1.1 State of the art 10.1.2 Chapter organization 10.1.3 Notation 10.2 Doubly massive MIMO systems 10.2.1 Differences with massive MIMO at microwave frequencies 10.2.2 Use cases 10.3 System model 10.3.1 The clustered channel model 10.3.2 Transmitter and receiver processing 10.3.3 Performance measures 10.4 Beamforming structures 10.4.1 Channel-matched, fully digital (CM-FD) beamforming 10.4.2 Partial zero-forcing, fully digital (PZF-FD) beamforming 10.4.3 Channel-matched, hybrid (CM-HY) beamforming 10.4.4 Partial zero-forcing, hybrid (PZF-HY) beamforming 10.4.5 Fully analog beam-steering beamforming (AB) 10.5 Asymptotic SE analysis 10.5.1 CM-FD beamforming 10.5.2 PZF-FD beamforming 10.5.3 Analog beamforming 10.6 EE maximizing power allocation 10.6.1 Interference-free case 10.6.2 Interference-limited case 10.7 Numerical results 10.8 Conclusions Acknowledgments References 11 Energy-efficient methods for cloud radio access networks 11.1 Introduction 11.2 Energy efficiency optimization: mathematical preliminaries 11.2.1 Global optimization method: monotonic optimization 11.2.2 Local optimization method: successive convex approximation 11.3 Cloud radio access networks: system model and energy efficiency optimization formulation 11.3.1 System model 11.3.2 Power constraints 11.3.3 Fronthaul constraint 11.3.4 Power consumption 11.3.4.1 Circuit power consumption 11.3.4.2 Signal processing and fronthauling power 11.3.4.3 Dissipated power on PA 11.3.4.4 Total power consumption 11.3.5 Problem formulation 11.4 Energy-efficient methods for cloud radio access networks 11.4.1 Globally optimal solution via BRnB algorithm 11.4.2 Suboptimal solutions via successive convex approximation 11.4.2.1 SCA-based mixed integer programming 11.4.2.2 SCA-based regularization method 11.4.2.3 SCA-based ℓ0-approximation method 11.4.3 Complexity analysis of the presented optimization algorithms 11.5 Numerical examples 11.5.1 Convergence results 11.5.2 Energy efficiency performance 11.6 Conclusion References 12 Energy-efficient full-duplex networks 12.1 Introduction 12.2 Literature review 12.2.1 Resource allocation 12.2.2 Protocol design 12.2.3 Hardware design 12.2.4 Energy harvesting 12.3 Single-cell analysis 12.3.1 System model 12.3.2 Numerical results 12.4 Multicell analysis 12.4.1 System model 12.4.2 Location-based classification criteria 12.4.3 Hybrid-duplex heterogeneous networks 12.4.4 Numerical results 12.5 Conclusion References 13 Energy-efficient resource allocation design for NOMA systems 13.1 Introduction 13.1.1 Background 13.1.2 Organization 13.1.3 Notations 13.2 Fundamentals of NOMA 13.2.1 From OMA to NOMA 13.2.2 Code-domain NOMA 13.2.3 Power-domain NOMA 13.2.4 Downlink NOMA 13.2.5 Uplink NOMA 13.3 Energy efficiency of NOMA 13.3.1 Energy efficiency of downlink NOMA 13.3.2 The trade-off between energy efficiency and spectral efficiency 13.4 Energy-efficient resource allocation design 13.4.1 Design objectives 13.4.2 QoS constraint 13.4.2.1 Minimum data rate requirement 13.4.2.2 Outage probability requirement 13.4.3 Fractional programming 13.4.4 Successive convex approximation 13.5 An illustrative example: energy-efficient design for multicarrier NOMA 13.5.1 System model 13.5.2 Energy-efficient resource allocation design 13.6 Simulation results and discussions 13.6.1 Convergence of the proposed algorithms 13.6.2 System energy efficiency versus the total transmit power 13.7 Conclusions Appendices A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 References 14 Energy-efficient illumination toward green communications 14.1 Introduction 14.2 Novel modulation techniques 14.2.1 Mixed-carrier communications 14.2.1.1 Binary-level transmission 14.2.1.2 Multilevel transmission 14.2.1.3 Frame structure 14.2.1.4 Spectrum management and interference analysis 14.2.1.5 Performance and discussion 14.2.2 Lightweight MCC 14.2.2.1 FFT-less concept 14.2.2.2 Performance evaluation 14.3 State-of-the-artVLC topics 14.3.1 Security of coexistence with RF technologies 14.3.1.1 OFDM inVLC 14.3.1.2 SA-OFDM transmission 14.3.1.3 SA-OFDM reception 14.3.1.4 SA-OFDM performance 14.3.2 Augmented MIMO in VLC 14.3.2.1 ASM system model 14.3.2.2 ASM performance evaluation 14.3.3 Deep learning in VLC 14.3.3.1 Background 14.3.3.2 Autoencoder OFDM-basedVLC system 14.3.3.3 Autoencoder-based optical camera communications 14.4 Conclusion References 15 Conclusions and future developments 15.1 Flattening the energy curve to support 5G evolution 15.2 Potential solutions for a greener future References Index Back Cover