دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ahluwalia V.K., Dhingra S. سری: ISBN (شابک) : 9781032867809 ناشر: CRC Press سال نشر: 2025 تعداد صفحات: 629 [630] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Green Chemistry in 21st Century and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی سبز در قرن بیست و یکم و پس از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصول مرتبط با شیمی سبز را شرح می دهد و بر طراحی محصولات از طریق مواد اولیه تجدید پذیر، مواد شیمیایی قابل بازیافت و سنتز خوش خیم تمرکز دارد. حلالهای سبز، تبدیلهای آلی، کاتالیزورها و سنتز الکتروشیمیایی نیز مورد بحث قرار میگیرند.
This book details the fundamentals associated with Green Chemistry and focuses on designing products through renewable starting materials, recyclable chemicals, and benign synthesis. Green solvents, organic transformations, catalysts, and electrochemical synthesis are also discussed.
Cover Half Title Green Chemistry in 21st Century and Beyond Copyright Contents Preface 1. Introduction to Green Chemistry Contents 1.1 Twelve Principles of Green Chemistry 1.2 Generalization of the Principles of Green Chemistry 1.3 Planning a Green Synthesis 1.4 Measurement of Greenness of a Reaction 1.4.1 Effective Mass Yield 1.4.2 Environmental Factor–E-Factor 1.4.3 Atom Economy 1.4.4 Mass Intensity 1.4.5 Carbon Efficiency 1.4.6 Reaction Mass Efficiency 1.5 The Nobel Prize in Green Chemistry 1.6 Sustainable Chemical Industry Conclusion References 2. Organic Transformations in Water Contents 2.1 Introduction 2.2 Organic Transformations in Aqueous Media 2.2.1 Organic Transformations in Water 2.2.1.1 Pericyclic reactions 2.2.1.2 Nucleophilic Addition Reactions 2.2.1.3 Some Organic Reactions involving Carbon-carbon bond Formation using Pd Catalyst 2.2.1.4 Formation of C—C Bonds from sp C—H bonds, sp2C—H bonds and sp3- C—H bonds 2.2.1.5 Miscellaneous organic reactions in water 2.2.1.6 Formation of C–O Bonds 2.1.1.7 Formation of C-Halogen Bonds 2.2.1.8 Formation of C–N bonds 2.2.1.9 Formation of Carbon-Sulphur Bonds 2.2.1.10 Cross Dehydrogenative Coupling (CDC) Formation of C–C Bonds 2.2.1.11 Homocoupling Reactions 2.2.2 Organic Transformation in Super Critical Water (SCW) 2.2.2.1 Introduction 2.2.2.2 Organic Transformations in Super Critical Water 2.2.3 Organic Transformation in High Temperature Water 2.2.3.1 Introduction Bibliography Conclusion References 3. Transformations in Ionic Liquids Contents 3.1 Introduction 3.2 Synthetic Applications 3.2.1 Baylis-Hillman Reaction 3.2.2 Knoevenagel Condensation 3.2.3 Claisen-Schmidt Condensation 3.2.4 Horner-Wadsworth-Emmons Reaction 3.2.5 Heck Reaction 3.2.6 Suzuki Coupling 3.2.7 Stille Coupling Reaction 3.2.8 Negishi Cross-Coupling Reaction 3.2.9 Trost-Tsuji Coupling Reaction 3.2.10 Sakuai Reaction 3.2.11 Henry Reaction 3.2.12 Stetter Reaction 3.2.13 Sonogashira Reaction 3.3 Acidic and Basic Ionic Liquids 3.3.1 Bronsted-acidic Ionic Liquids 3.3.1.1 Friedel-Crafts Alkylation 3.3.1.2 Esterification, ether formation and pinacol-pinacolone rearrangement 3.3.1.3 Pechmann Condensation 3.3.1.4 Synthesis of Caprolactam 3.3.1.5 Synthesis of 3,4-dihydropyridimine--2-(1H) Ones 3.3.1.6 Synthesis of β-enamines 3.3.2 Bronsted-basic Ionic Liquid 3.3.2.1 Michael addition 3.3.2.2 Markovnikov addition of N-heterocycles to vinyl ethers 3.4 Miscellaneous Applications 3.4.1 Conversion of Epoxides to Halohydrins 3.4.2 Conversion of Alkyl Halide into Alkyl Thiocyanate 3.4.3 Synthesis of Cyclic Carbonates 3.4.4 Rosenmund-Von Braun Reaction 3.4.5 Synthesis of Poly (Aryl Ether Ketones) (PAEKS) 3.4.6 Oxidation Reactions 3.4.7 Diels-Alder Reaction 3.4.8 Conversion of Oxiranes (epoxides) into Thiiranes 3.4.9 Beginelli Reaction 3.4.10 Synthesis of 3-Acetyl-5 [(z) Arylmethylidene] 1,3-Thiazolidine-2,4-diones 3.4.11 Synthesis of Symmetric Urea Derivatives 3.4.12 Synthesis of Aryl Amines 3.4.13 Synthesis of α-aminonitriles 3.4.14 Synthesis of Homolytic Amines 3.4.1.5 Conjugate Addition of Thiols to α, β-unsat’d Ketones in [bmin] [PF6]/H2O 3.4.16 Nucleophilic Displacement Reactions 3.4.17 Bromination of Alkynes 3.5 Biotransformations 3.5.1 Synthesis of Z-Aspartame 3.5.2 Conversion of 1,3-dicyanobenzene into 3-cyanobenzamide and 3-cyano benzoic acid 3.5.3 Transesterifications 3.5.4 Ammoniolysis of Carboxylic Acids 3.5.5 Synthesis of Geranyl Acetate 3.5.6 Transesterification of Glucose 3.5.7 Transesterification of L-Ascorbic Acid 3.5.8 Enantioselective hydrolysis of a Prochiral Malonic Ester 3.5.9 Enantioselective Hydrolysis of Naproxen Methyl Ester 3.5.10 Enantioselective Esterification of Ibuprofen Conclusion References 4. Transformations in Super Critical Carbon Dioxide Contents 4.1 Introduction 4.2 Reactions in SC-CO2 4.2.1 Hydrogenation in Supercritical Carbon Dioxide 4.2.2 Hydrogenation of Acetophenone 4.2.3 Semihydrogenation of Dehydroisophytol 4.2.4 Hydrogenation of Maleic Anhydride 4.2.5 Asymmetric Hydrogenation of Ethyl Pyruvate 4.2.6 Enantioselective Hydrogenation of Prochiral a-enamides 4.2.7 Asymmetric Hydrogenation of β, β-disubstituted enamide 4.2.8 Hydrogenation of Tiglic Acid 4.2.9 Enantioselective Hydrogenation of Imines 4.3 Hydroformylation in Supercritical Carbon Dioxide 4.3.1 Hydroformylation of Styrene 4.3.2 Hydroformylation of Acrylates 4.4 Oxidations in Supercritical Carbondioxide 4.5 Radical Reactions in Supercritical Carbon Dioxide 4.5.1 Free Radical Halogenation 4.5.2 Free Radical Carbonylation of Halides 4.5.3 Reduction of Bromoadamantane in Sc-CO2 4.5.4 Radical Cyclisations in Sc-CO2 4.6 Diels-Alder Reaction in SC-CO2 4.6.1 Diel-Alder Reaction of Isoprene and Methyl Acrylate 4.6.2 Diels-Alder Reaction of 2-t-butyl-1,3-butadiene and Methyl Acrylate 4.6.3. Diels-Alder Reaction of Cyclopentadiene and Ethyl Acrylate Derivatives 4.6.4 Aza-Diels-Alder Reaction 4.7 Acid Catalysed Reactions 4.7.1 Friedel Crafts Alkylation of Aromatics 4.7.2 Synthesis of Tetrahydrofuran 4.7.3 Mannich Reaction and Aldol Reaction 4.7.4 Fridel-crafts Alkylation of Indole Derivatives in Sc-CO2 4.8 Coupling Reactions 4.8.1 Heck Reaction 4.8.2 Still Coupling 4.8.3 Synthesis of Biaryls 4.8.4 Carbonylation of 2-iodobenzyl Alcohol 4.8.5 Carbonylation of n-butylamine 4.8.6 Wacker Reaction 4.9 Miscellaneous Reactions in SC-CO2 4.9.1 Synthesis of 2-pyrones 4.9.1 Pauson-Khand Reaction 4.9.2 Asymmetric Cyclopropanation 4.9.3 Enantioselective Hydrovinylation of Styrene 4.9.4 Hydroboration of Styrene 4.9.5 Synthesis of Carbamates 4.9.6 Synthesis of Vinyl Carbamate 4.9.7 Baylis-Hillman reaction 4.9.8 Henry Reaction 4.9.9 Photochemical Reactions in SC-CO2 4.10 Enzymatic Transformation in SC-CO2 4.10.1 Kinetic Resolution of Racemic 3-(4-methoxyphenyl) Glycidic Acid Methyl Ester 4.10.2 Transesterification of N-acetyl-1-phenylalanine Chloroethyl Ester 4.10.3 Trans Acetylations of I-O-p-nitrophenyl-β-D-glactopyranoside 4.10.4 Esterification of Lauric Acid 4.10.5 Esterification of Citronellol in SC-CO2 4.10.6 Kinetic Resolution 1-phenylethanol with Vinyl Acetate 4.10.7 Enantioselective Acetylation of Alcohols in SC-CO2 4.10.8 Synthesis of Pyrrole-2-carboxylic Acid 4.10.9 Polymerisations in Sc-CO2 4.10.10 Formation of Silica Nanoparticles Conclusion References 5. Transformations in Polyethylene Glycol and its Solutions Contents 5.1 Introduction 5.2 Use of PEG in Organic Transformations 5.2.1 Substitution Reactions 5.2.2 Oxidations 5.2.3 Reductions 5.3 PEG as Phase-Transfer Catalysts (PTC) 5.3.1 Williamsons Ether Synthesis 5.3.2 Substitution Reactions using PEGs as PTC 5.3.3 Oxidations using PEG as PTC 5.3.4 Reductions using PEG as PTC 5.4 L-Prodine Catalysed Asymmetric Aldol Reactions 5.5 L-Proline Catalysed Asymmetric Transfer Aldol Reaction 5.6 Regioselective Heck Reaction 5.7 Baylis-Hillman Reaction 5.8 Suzuki Cross Coupling Reaction in PEG 5.9 Synthesis of azo Compounds using PEG 5.10 Oxidation of Cyclohexene to Adipic Acid with Hydrogen Peroxide in Presence of Na2WO4 using PEGzNaHSO4 5.11 Enzymatic Transformations in PEG 5.12 Some Miscellaneous Reactions in PEG 5.12.1 Diels-Alder Reaction 5.12.2 Michael Addition Reaction 5.12.3 Wacker Oxidation Conclusion References 6. Transformations in Fluorous Solvents Contents 6.1 Introduction 6.2 Characteristics of Fluorous Liquids 6.3 Fluorous Labtelling of Organic Molecules 6.4 Perfluorinated Catalysts 6.5 Some Applications of Fluorous Phase Technique 6.6 Enzymatic Transformations Conclusion References 7. Miscellaneous Green Solvents Contents 7.1 Introduction 7.2 Ethyl Lacatate 7.3 Gamma-Butyrolactone (GBL) 7.4 Solvents with Switchable Properties Conclusion References 8. Solvent-free Organic Transformations Contents 8.1 Introduction 8.2 Solvent-free Organic Transformations by Grinding the Reactants Using Mortar and Pestle 8.2.1 Aldol Condensation 8.2.2 Reformatsky Reaction 8.2.3 Synthesis of 1,4-dihydro-quinoxaline-2,3-dione 8.2.4 Synthesis of β-keto Sulfones from Ketones 8.2.5 Synthesis of α-Tosyloxy β-Ketosulfones 8.2.6 Synthesis of 1-aryl-4-methyl-1, 2, 4-trizolo [4, 3-a]-quinoxalines 8.2.7 Synthesis of Oximes using Grindstone Chemistry 8.2.8 Synthesis of Thionocarbamates 8.2.9 Synthesis of Sym. Triisopropylbenzene 8.2.10 Baker-Venkataraman Rearrangement 8.2.11 Synthesis of 1, 4-disubstituted–1, 2, 3-triazoles 8.3 Solvent Free Organic Transformations using Ball Milling 8.3.1 Wittig Reaction 8.3.2 Horner-Wadsworth-Emmons Reaction 8.3.3 Aldol Condensation 8.3.4 Knoevenagel Condensation 8.3.5 Sonogashira Coupling 8.3.6 Heck Coupling 8.3.7 Suzuki Coupling 8.4 Solvent-free Organic Transformations by Heating the Reactants 8.4.1 Oxidation of Hydroxy Aldehydes and Ketones to Hydroxy Phenols using Urea-Hydrogen Peroxide Adduct (UHP) 8.4.2 Oxidation of Nitriles to Amides Using UHP 8.4.3 Selective Oxidation of Sulfides to Sulfoxides or Sulfones 8.4.4 Oxidation of Nitrogen Heterocycles to N-oxides using UHP 8.5 Solvent-free Organic Transformations using Clay-Supported Reagents 8.5.1 Polymerisation of Styrene 8.5.2 Reaction of Triphenylamine with Na+-montorillonite 8.5.3 Dehydration of Alcohols 8.5.4 Synthesis of Dialkyl Amines and Dialkyl Thioethers 8.5.5 Addition of Terminal Alkenes to Alcohols and Thiols 8.5.6 Friedel-Crafts Reaction 8.5.7 Diels-Alder Reaction 8.5.8 Heck Reaction 8.5.9 Suzki Coupling 8.6 Miscellaneous Solvent-free Organic Transformations 8.6.1 Synthesis of Calix [4] resorcin arene 8.6.2. Oxidation of Benzophenone with m-CPBA 8.6.3 Reduction of Ketones to Secondary Alcohols 8.6.4 Michael Addition 8.6.5 Photoaddition 8.6.6 Biginelli Condensation 8.6.7 Diels-Alder Cycloadditions 8.6.8 Baylis-Hillman Reaction 8.6.9 Cannizzaro, Tischenko and Meerwein-Ponndorf-verley Reactions 8.6.10 Reduction of Substituted Benzaldehydes, Acetophenones and Methyl Benzoates with NaBH4 using HSBM 8.6.11 Synthesis of S-alkyl Dithiocarbamates 8.6.12 Asymmetric Hetero-Diels-Alder Reaction 8.7 Microwave Assisted Solvent free Organic Transformations Conclusion References 9. Microwave Assisted Organic Transformations Contents 9.1 Introduction 9.2 Microwave assisted Organic Transformations in Water 9.2.1 Hofmann Elimination 9.2.2 Hydrolysis of Benzyl Chloride 9.2.3 Hydrolysis of Benzamide 9.2.4 Saponification 9.2.5 Demethylation 9.2.6 Oxidation of Side Chains in Aromatic Compounds 9.2.7 Alkylation of Amines 9.2.8 Synthesis of Azacycloalkanes 9.2.9 Synthesis of Isoindolines 9.2.10 Sonogashira-type Coupling Reaction 9.2.11 Heck Coupling 9.2.12 Suzuki Reaction 9.2.13 Hantzsch Synthesis of 1,4-dihydropyridines 9.2.14 Synthesis of Deferiprone 9.2.15 Willgerodt Reaction 9.2.16 Miscellaneous MW Assisted Organic Transformations in Water 9.3 Microwave Assisted Organic Transformations in Organic Solvents 9.3.1 Esterification 9.3.2 Transesterification 9.3.3 Cycloaddition Reactions 9.3.4 Synthesis of Benzodiazepin-2-Ones 9.3.5 Aromatic Nucleophilic Substitution Reaction 9.3.6 Pericyclic Reactions 9.3.7 Reduction of Aldehydes to Alcohols 9.3.8 Catalytic Transfer Hydrogenation of β-lactam Derivatives 9.3.9 Fries Rearrangement 9.3.10 Synthesis of Chalcones 9.3.11 Decarboxylations 9.3.12 Suzuki Cross Coupling Reaction 9.3.13 Miscellaneous Organic Transformations in Organic Solvents 9.4 Microwave Assisted Reactions in Solid State 9.4.1 Microwave Assisted Reactions in Solid State by Direct Heating of the Substrates 9.4.1.1 Reactions involving N-alkylations 9.4.1.2 Knoevenagel Condensation 9.4.1.3 Synthesis of bridgehead Nitrogen Heterocycles 9.4.1.4 Synthesis of 2-oxazolines 9.4.1.5 Synthesis of Benzimidazole Derivatives 9.4.1.6 Conversion of 3-nitrophthalic Acid into Nitrophthalimedo butyric Acid (NPB) 9.4.1.7 Peroxidative Oxidation of Secondary Alcohols to Ketones 9.4.1.8 Synthesis of Esters from o-alkylisoureas 9.4.1.9 Ritter Reaction 9.4.1.10 Synthesis of Indocyanine Dyes 9.4.1.11 Wittig Reaction 9.4.1.12 Henry Reaction 9.4.1.13 Synthesis of 2,3-disubstituted Quinoxalines 9.4.1.14 Michael Addition 9.4.1.15 Synthesis of Aspirin 9.4.1.16 Thionation Reactions: Synthesis of Thioketones, Thiolactones, Thio amides, thioesters and thioflavonoids 9.4.1.17 Beckmann Rearrangement 9.4.2 Microwave Assisted Reactions in Solid State using Supported Reagents 9.4.2.1 Protection/deprotection Reactions 9.4.2.2 Deprotection of Aldehyde Diacetates 9.4.2.3 Debenzylation of Carboxylic Esters 9.4.2.4 Selective Cleavage of N-tert-butoxycarbonyl Group 9.4.2.5 Deprotection of tert-butyldimethylsilyl Group (TBDMS) 9.4.2.6 Deprotection of Thioacetals 9.4.2.7 Deoximation of Oximes 9.4.2.8 Cleavage of Semicarbazones and Phenyl Hydrazones 9.4.2.9 Dethiocarbonylation 9.4.3 Oxidations 9.4.3.1 Oxidation of Alcohols 9.4.3.2 Oxidation of Sulfides 9.4.3.3 Oxidation of Enamines 9.4.3.4 Oxidation of Arenes 9.4.4 Reductions 9.4.4.1 Reduction of Carbonyl Compounds 9.9.4.2 Reductive Alkylation of Amines 9.4.5 Pinacol-Pinacolone Rearrangement 9.4.6 Beckmann Rearrangement 9.4.7 Synthesis of Substituted Thiazoles 9.4.8 Synthesis of 2-aroyl benzofurans 9.4.9 Synthesis of Flavones 9.4.10 Synthesis of 2-aryl-1,2,3,4-tetrahydro-4-quinolones 9.4.11 Transformation of Aromatic Aldehydes to Nitriles 9.4.12 Conversion of Aldehydes to Alcohols 9.5 Scaling up of Microwave Assisted Transformations 9.5.1 Introduction 9.5.2 Suzuki Coupling Reaction 9.5.3 Hentzsch Synthesis of 1,4-dihydropyridines 9.5.4 Beckmann Rearrangement 9.5.5 Synthesis of 2-amino-4-phenyl Thiazole 9.5.6 Heck Coupling Reaction 9.5.7 Esterification 9.5.8 Transesterification 9.5.9 Synthesis of 2-octene 9.5.10 Synthesis of Fluorescein 9.5.11 Du Pont HCN Industrial Process112 9.5.12 Phenylacylation of 1, 2, 4-triazole 9.5.13 Synthesis of Ionic Liquids 9.5.14 Scaling up of MW assisted Reactions using Solvent-Swoll 9.5.15 Microwave-assisted Deuterium Exchange 9.5.16 Synthesis of Aspirin 9.5.17 Synthesis of Paracetamol 9.5.18 Synthesis of Tetrachlorophthalimidoacetic Acid 9.5.19 Synthesis of 3-carboxycoumarin 9.5.20 Synthesis of 2, 3-Dimethyl Indole 9.5.21 Decarboxylation of Indole-2-carboxylic Acid 9.5.22 Friedel-Crafts Reaction 9.5.23 Methylation of Phenols, Indoles and Benzamidazoles 9.5.24 Synthesis of alkyl-2-(hydroxymethyl) Acrylates 9.5.25 Depolymerisation of Cellulose 9.5.26 Rearrangement of 2-benzoyloxyacetophenone Bibliography Conclusion References 10. Ultrasound Assisted Organic Transformations Contents 10.1 Introduction 10.2 Synthetic Applications 10.2.1 Esterification 10.2.2 Saponification 10.2.3 Solvolysis/Hydrolysis 10.2.4 Friedel Crafts Reaction 10.2.5 Substitutions 10.2.6 1,4-Addition to α, β-unsaturated Carbonyl Compounds 10.2.7 Cycloadditions 10.2.8 Hydrogenations 10.2.9 Coupling Reactions 10.2.10 Dehalogenations 10.2.11 Alkylations 10.2.11.1 N-Alkylations 10.2.11.2 C-Alkylations 10.2.11.3 S-Alkylation 10.2.11.4 O-Alkylation 10.2.12 Oxidation 10.2.13 Reduction 10.2.14 Hydroboration 10.2.15 Hydrosilation and Hydroalkylation 10.2.16 Grignard Reagents 10.2.17 Diels-Alder Cycloaddition Reaction 10.2.18 Curtius Rearrangement 12.2.19 Strecker Synthesis 10.2.20 Cannizzaro Reaction 10.2.21 Reformatsky Reaction 10.2.22 Barbier Reaction 10.2.23 Dieckmann Cyclisation 10.2.24 Oxymercuration of Olefins 10.2.25 Condensation Reaction 10.2.25.1 Synthesis of 3-nitro-2H-Chromenes 10.2.25.2 Knoevenagel Condensation 10.2.25.3 Synthesis of Chalcones 10.2.25.4 Synthesis of Nitroalkenes 10.2.25.5 Michael Addition 10.2.25.6 Mannich Reaction 10.2.26 Synthesis of Heterocycles 10.2.26.1 Synthesis of 1H-benzotriazoles 10.2.26.2 Synthesis of Pyrazoles 10.2.26.3 Biginelli Reaction 10.2.26.4 Synthesis of 1,5-benzodiazepines 10.2.27 Coupling Reactions 10.2.27.1 Heck Reaction 10.2.27.2 Suzuki Reaction 10.2.28 Synthesis of Functionalized Aryl Acetylenes 10.2.29 Synthesis of Imines Conclusion References 11. Photochemical Organic Transformations Contents 11.1 Introduction 11.2 Photochemical Transformations 11.2.1 Synthesis of Benzopinacol 11.2.2 Photochemical Transformations of Olefins 11.2.3 Isomerization of Olefins 11.2.4 Conversion of Maleic Acid into Terebic Acid 11.2.5 Photoisomerisation of cis and trans stilbenes 11.2.6 Photochemical Cycloaddition Reactions 11.2.7 Photoinduced Substitution of Aromatic Compounds 11.2.8 Photoirridation of dibenzoyldiazomethane in Presence of Amino Acid Derivative 11.2.9 Photochemical Cycloadditions in Water 11.2.10 Photochemical Reactions in Solid State 11.2.11 Synthesis of Allylphenols and allylanisoles 11.2.12 Synthesis of α-arylpropionic Acid Derivatives 11.2.13 Synthesis of 13-cis-retionic Acid 11.2.14 Synthesis of Previtamin D3 11.2.15 Synthesis of Three-membered Rings 11.2.16 Synthesis of Cyclobutane Ring 11.2.17 Synthesis of Five-membered Ring 11.2.18 Synthesis of Six-membered Rings 11.2.19 Synthesis of Larger Rings 11.2.20 Photooxygenation 11.2.21 Some Industrial Applications of Photochemistry 11.2.21.1 Free-Radical Reactions 11.2.21.2 Photochemical Synthesis of Vitamin D and Related Compounds 11.2.22 Miscellaneous Photochemical Applications 11.2.22.1 Cleavage of Dithianes and Benzyl Ethers 11.2.22.2 Hydrolysis of Benzonitrile to Benzamide 11.2.22.3 Synthesis of 2-substituted pyridines 11.2.22.4 Conversion of nitrobenzene into phenyl hydroxylamine 12.2.22.5 Conversion of 4-cyanophenylazide into 4-cyanoaniline 11.2.22.6 Addition of aldehydes to α, β-unsaturated carbonyl compounds 11.2.22.7 Synthesis of 1,4-naphthoquinone Photomer 12.2.22.8 9-Phenyl Phenanthrene 12.2.22.9 Photochemical Arndt-Eistert Synthesis 12.2.22.10 Barton Reaction Conclusion References 12. Organic Transformations using Phase Transfer Catalysts Contents 12.1 Introduction 12.2 Applications of Phase Transfer Catalysis in Organic Synthesis 12.2.1 Synthesis of Nitriles 12.2.2 Synthesis of Isonitriles 12.2.3 Synthesis of Alkyl Flruorides 12.2.4 Conversion of Alkyl Halides into Alcohols 12.2.5 Azides from Alkyl Halides 12.2.6 Sodium Alkyl Sulphonates from Alkyl Halides 12.2.7 Alkyl Nitrates, Thiocyanates, Cyanates and p-toluene Sulphonates from Alkyl Halides 12.2.8 Aryl Ethers and Thioethers 12.2.9 Esterification 12.2.10 Saponification 12.2.11 Dichlorocarbene 12.2.12 Diazomethane 12.2.13 Reaction of Dichlorocarbene with Amines 12.2.14 Reaction of Dichlorobenzene with Substituted Indoles 12.2.15 Reaction of Dichlorocarbene with Alcohols 12.2.16 Reaction of Dichlorocarbene with Aldehydes 12.2.17 Vinylidene Carbenes 12.2.18 Vinyl Carbenes 12.2.19 Elimination Reactions 12.2.20 Carbonylation of Aryl and Vinyl Halides 12.2.21 Alkylations 12.2.21.1 O-Alkylations 12.2.20.2 C-Alkylations 12.2.21.3 N-Alkylations 12.2.21.4 S-Alkylations 12.2.21.5 Alkylation of Mercaptans and Thiophenols 12.2.22 Benzoin Condensation 12.2.23 Darzen Reaction 12.2.24 Michael Reaction 12.2.25 Williamsons Ether Synthesis 12.2.26 Wittig Reaction 12.2.27 Wittig-Horner Reaction 12.2.28 Sulphur Ylids 12.2.29 Oxidation 12.2.29.1 Potassium Permanganate Oxidation 12.2.29.2 Chromate Oxidation 12.2.29.3 Hypochlorite Oxidation 12.2.29.4 Oxidation with Osmium or Ruthenium Oxides in Presence of Periodic Acid 12.2.29.5 Potassium Ferricyanide Oxidation 12.2.29.6 Air Oxidations 12.2.29.7 Oxidation with Peroxides 12.2.30 Reduction 12.2.30.1 Hydride Reduction 12.2.30.2 Reduction by Diborane 12.2.30.3 Reduction by Formamidine Sulfinic Acid 12.2.31 Superoxide Anion 12.2.32 Phase Transfer Catalysts in Pharmaceutical Industry Conclusion References 13. Biocatalytic Transformations Contents 13.1 Introduction 13.2 Biocatalysts in Organic Synthesis 13.2.1 Oxidation 13.2.1.1 Hydroxylation of Aromatic Rings 13.2.1.2 Biocatalytic Oxidation of Side Chain in Aromatic Nucleus 13.2.1.3 Biochemical Oxidation of Secondary Alcohol to Ketones 13.2.1.4 Biocatalytic Baeyer-Villiger Oxidation 13.2.1.5 Hydroxylation in Steroids 13.2.1.6 Oxidation of Hydroxy Ketones to Diones in Steroidal Alcohols 13.2.1.7 Biochemical Oxidation of Amines 13.2.1.8 Miscellaneous Oxidations 13.2.2 Reduction 13.2.3 Transesterification 13.2.4 Selective Hydrolysis of Diesters 13.2.5 Enzymatic Synthesis of Carboxylic Acids, Amides and Nitriles 13.2.6 Use of Biocatalysts in the Manufacture of Aromatic Compounds 13.3 Biocatalytic Transformations in Green Solvents 13.3.1 Biocatalytic Transformations in Ionic Liquids 13.3.2 Biocatalytic Transformation in Supercritical Carbon dioxide 13.3.3 Biocatalytic Transformations in Polyethylene Glycol 13.3.4 Biocatalytic Transformation in Fluorous Solvents 13.3.4.1 Kinetic Resolution of Rac. 1-phenylethanol 13.3.4.2 Resolution of 1-(2-naphthyl) Ethanol 13.3.4.3 Enantioselective Esterification of Rac. α-methylpentanoic acid 13.4 Miscellaneous Biocatalytic Transformations Conclusion References 14. Organic Transformations using Supported Catalysts Contents 14.1 Introduction 14.2 Polymer-Bound Catalysts 14.2.1 Ion-exchange Resins 14.2.2 Polymer Supported Catalysts 14.2.2.1 Polystyrene-Aluminium Chloride Catalyst 14.2.2.2 Polymeric Super Acid Catalyst 14.2.2.3 Polymeric Esterolytic Catalyst 14.2.2.4 Polymer-supported Phase-transfer Catalysts 14.2.2.5 Polymeric Triphase Catalysts 14.2.2.6 Polymeric Photosensitizers 14.3 Supported Metal Complexes 14.3.1 Polymer-supported Palladium Complexes 14.3.2 Supported Metal Catalysts 14.3.3 Organocatalysts 14.4 Supported Asymmetric Organocatalysts 14.4.1 Polymer-supported Chiral Amines 14.5 Polymer-Supported Asymmetric Phase Transfer Catalysts 14.5a Polymer-Supported Phosphoric Acid Catalyst 14.6 Solid Supported Catalysts 14.6.1 Immobilized Palladium Catalyst 14.6.2 Immobilized Rhodium Catalysts 14.6.2.1 Cyclopropanation 14.6.2.2 Conjugate Addition Reactions 14.6.2.3 Hydrogenation Reactions 14.6.2.4 Carbonylations 14.7 Immobilized Ruthenium Catalysts 14.7.1 Ruthenium Catalysed Metathesis Reactions 14.7.2 Ruthenium Catalysed Transfer Hydrogenation 14.7.3 Ruthenium-catalysed Ring Opening of Epoxides 14.7.4 Ruthenium-catalysed Cyclopropanation Reaction 14.7.5 Ruthenium-catalysed Halogenation Reactions 14.8 Immobilized Cobalt Catalyst 14.9 Immobilized Copper Catalyst 14.10 Immobilized Iridium Catalysts Conclusion References 15. Organic Transformations using Green Reagents Contents 15.1 Oxygen 15.2 Singlet Oxygen 15.3 Ozone 15.4 Hydrogen Peroxide 15.5 Dioxiranes 15.6 Oxone 15.7 Peroxy Acids 15.8 Dimethyl Carbonate 15.9 Polymer Supported Reagents 15.9.1 Polymeric-N-Bromosuccinimide (P-NBS) 15.9.2 Polymeric Organotin Dihydride Reagent 15.9.3 Poly (4-vinylpyridine) borane 15.9.4 Polymeric Carbodiimide 15.9.5 Polymeric Benzene Sulfonyl Chloride 15.9.6 Polymer Supported Peptide Coupling Reagent EEDQ 15.9.7 Polymer Supported Peracid 15.9.8 Polymer Supported Chromic Acid 15.9.9 S-chlorosulfonium Chloride Resin 15.9.10 Polymeric Wittig Reagent 15.9.11 Polymeric Tosyl Azide 15.9.12 Polymeric Nucleophiles 15.9.13 Polymer Supported Trisubstituted Phosphine Dichlorides 15.10 N-Halo Reagents 15.11 Urea-Hydrogenperoxide Complex Conclusion References 16. Organic Transformations Using Renewable Starting Materials Contents 16.1 Introduction 16.2 Biomass as Renewable Starting Material 16.2.1 Olefins from Biomass 16.2.2 Alcohols and Carboxylic Acids from Biomass 16.2.3 Aromatic Compounds from Biomass 16.2.4 Fats and Oils as a Source of Chemicals 16.2.5 Synthesis Gas from Biomass 16.2.6 Conversion of Cellulose into useful Chemicals 16.3 Synthesis of Useful Products from Carbon Dioxide 16.4 Useful Products from Methane 16.5 Biosolvents from Biomass Conclusion References 17. Electrochemical Synthesis Contents 17.1 Introduction 17.2 Applications of Electrochemical Synthesis 17.2.1 Synthesis of Adiponitrile 17.2.2 Synthesis of Sebacic Acid 17.2.3 Miscellaneous Applications Conclusion References 18. Pharmaceutical Industry: Now and Then Contents 18.1 Introduction 18.2 Green Chemistry in Pharmaceutical Industry 18.2.1 Computer Aided Drug Designing 18.2.2 Redesigning The Drug Synthesis 18.2.3 Reducing the Consumption of Solvents and Choosing Benign Solvents 18.2.4 Biocatalysts 18.2.5 Continuous Flow Process 18.2.6 Semi Synthetic Approach 18.2.7 Use of Renewable Resources 18.2.8 Reduction in the Use of Non-renewable Energy 18.3. Success Stories of Green Pharmaceutical Synthesis 18.3.1 Synthesis of Amoxicillin1 18.3.2 Synthesis of Aprepitant2 18.3.3 Synthesis of Artemisinin3,4,5 18.3.4 Synthesis of Ibuprofen6,7 18.3.5 Synthesis of Imatinib8,9,10 18.3.6 Synthesis of Paracetamol (Acetaminophen)11 18.3.7 Synthesis of Pregabalin12 18.3.8 Synthesis of 13-cis-Retinoic Acid13 18.3.9 Synthesis of Sertraline14 18.3.10 Synthesis of Sildenafil15,16 18.3.11 Synthesis of Sevoflurane17 18.3.12 Examples of Computer Aided Drug Discovery18,19 18.3.13 Paclitaxel (Taxol)20 18.3.14 Sterilisation: Greener Alternatives Conclusion References 19. Polymers Contents 19.1 Introduction 19.2 Greening the Polymer Industry: Remedial Measures 19.3 Green Monomer Synthesis 19.3.1 Synthesis of Adipic Acid2 19.3.2 Synthesis of Caprolactam3 19.3.3 Synthesis of Ethylene4 19.3.4 Synthesis of Ethylene Glycol5 19.3.5 Synthesis of Terephthalic Acid6 19.3.6 Styrene and Acrylates from Bio-mass7 19.4 Green Polymerisation 19.4.1 Enzyme Catalysed Polymerisations8(a-e) 19.4.2 Green Solvents fo Polymerisation9(a-f) 19.4.3 Atom Tranfer Radical Polymerisation10 19.4.4 Synthesis of Polystyrene11(a,b) 19.4.5 Green Synthesis of Polyurethane 19.4.6 Nylon 6,12 19.4.7 Air Carbon 19.5 Synthesic of Polyesters 19.5.1 Polylactic Acid/Polylactide (PLA)12 19.5.2 Polypropylenefumarate (PPF)13 19.5.4 Polyethylene Furanoate (PEF) 19.5.5 Biodegradable Polymers 19.6 Green Polymer Adhesives 19.7 Polymer additives 19.7.1 Flame Retardents 19.7.2 Stabilizers 19.7.3 Plasticizers 19.7.4 Fillers 19.8 Recycling of Polymers 19.8.1 Introduction 19.8.2 Polymer Recycling 19.8.3 Recycling of PET 19.8.4 HDPE Recycle 19.8.5 PVC Recycle 19.8.6 Nylon-6 Recovery from Carpets 19.8.7 Recycling of Polycarbonate 19.8.8 Recycling of Polyethylene (PE) and Polypropylene (PP) Conclusion References 20. Agrochemicals Contents 20.1 Introduction 20.2 Synthesis Pesticides 20.2.1 Organochlorines 20.2.2 Organophosphate Pesticides 20.2.3 Pyrethroids 20.2.4 Carbamates 20.2.5 Neonicotinoids 20.3 Herbicides 20.4 Synthetic Fungicides 20.5 Green Agrochemicals 20.6 Green Chemistry and Sustainable Agriculture 20.7 Controlled Release Agrochemical Formulations 20.8 Nitrification inhibitors for nitrogen fertilizers 20.9 Bio-agrochemicals 20.9.1 Bacillus thuringiensis (Bt) 20.9.2 Spinosad 20.9.3 Spinetoram 20.9.4 Serenade 20.9.5 Rhamnolipid 20.9.6 Harpins 20.10 Bio-fertilisers Conclusion Appendix Green Chemistry Academic Programs Green Chemistry Organizations Green Chemistry Journals Green Chemistry Awards Index