ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Green Chemistry in 21st Century and Beyond

دانلود کتاب شیمی سبز در قرن بیست و یکم و پس از آن

Green Chemistry in 21st Century and Beyond

مشخصات کتاب

Green Chemistry in 21st Century and Beyond

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781032867809 
ناشر: CRC Press 
سال نشر: 2025 
تعداد صفحات: 629
[630] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Green Chemistry in 21st Century and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی سبز در قرن بیست و یکم و پس از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی سبز در قرن بیست و یکم و پس از آن

این کتاب اصول مرتبط با شیمی سبز را شرح می دهد و بر طراحی محصولات از طریق مواد اولیه تجدید پذیر، مواد شیمیایی قابل بازیافت و سنتز خوش خیم تمرکز دارد. حلال‌های سبز، تبدیل‌های آلی، کاتالیزورها و سنتز الکتروشیمیایی نیز مورد بحث قرار می‌گیرند.


توضیحاتی درمورد کتاب به خارجی

This book details the fundamentals associated with Green Chemistry and focuses on designing products through renewable starting materials, recyclable chemicals, and benign synthesis. Green solvents, organic transformations, catalysts, and electrochemical synthesis are also discussed.



فهرست مطالب

Cover
Half Title
Green Chemistry in 21st Century and Beyond
Copyright
Contents
Preface
1. Introduction to Green Chemistry
	Contents
	1.1 Twelve Principles of Green Chemistry
	1.2 Generalization of the Principles of Green Chemistry
	1.3 Planning a Green Synthesis
	1.4 Measurement of Greenness of a Reaction
		1.4.1 Effective Mass Yield
		1.4.2 Environmental Factor–E-Factor
		1.4.3 Atom Economy
		1.4.4 Mass Intensity
		1.4.5 Carbon Efficiency
		1.4.6 Reaction Mass Efficiency
	1.5 The Nobel Prize in Green Chemistry
	1.6 Sustainable Chemical Industry
	Conclusion
	References
2. Organic Transformations in Water
	Contents
	2.1 Introduction
	2.2 Organic Transformations in Aqueous Media
		2.2.1 Organic Transformations in Water
			2.2.1.1 Pericyclic reactions
			2.2.1.2 Nucleophilic Addition Reactions
			2.2.1.3 Some Organic Reactions involving Carbon-carbon bond Formation using Pd Catalyst
			2.2.1.4 Formation of C—C Bonds from sp C—H bonds, sp2C—H bonds and sp3- C—H bonds
			2.2.1.5 Miscellaneous organic reactions in water
			2.2.1.6 Formation of C–O Bonds
			2.1.1.7 Formation of C-Halogen Bonds
			2.2.1.8 Formation of C–N bonds
			2.2.1.9 Formation of Carbon-Sulphur Bonds
			2.2.1.10 Cross Dehydrogenative Coupling (CDC) Formation of C–C Bonds
			2.2.1.11 Homocoupling Reactions
		2.2.2 Organic Transformation in Super Critical Water (SCW)
			2.2.2.1 Introduction
			2.2.2.2 Organic Transformations in Super Critical Water
		2.2.3 Organic Transformation in High Temperature Water
			2.2.3.1 Introduction
	Bibliography
	Conclusion
	References
3. Transformations in Ionic Liquids
	Contents
	3.1 Introduction
	3.2 Synthetic Applications
		3.2.1 Baylis-Hillman Reaction
		3.2.2 Knoevenagel Condensation
		3.2.3 Claisen-Schmidt Condensation
		3.2.4 Horner-Wadsworth-Emmons Reaction
		3.2.5 Heck Reaction
		3.2.6 Suzuki Coupling
		3.2.7 Stille Coupling Reaction
		3.2.8 Negishi Cross-Coupling Reaction
		3.2.9 Trost-Tsuji Coupling Reaction
		3.2.10 Sakuai Reaction
		3.2.11 Henry Reaction
		3.2.12 Stetter Reaction
		3.2.13 Sonogashira Reaction
	3.3 Acidic and Basic Ionic Liquids
		3.3.1 Bronsted-acidic Ionic Liquids
			3.3.1.1 Friedel-Crafts Alkylation
			3.3.1.2 Esterification, ether formation and pinacol-pinacolone rearrangement
			3.3.1.3 Pechmann Condensation
			3.3.1.4 Synthesis of Caprolactam
			3.3.1.5 Synthesis of 3,4-dihydropyridimine--2-(1H) Ones
			3.3.1.6 Synthesis of β-enamines
		3.3.2 Bronsted-basic Ionic Liquid
			3.3.2.1 Michael addition
			3.3.2.2 Markovnikov addition of N-heterocycles to vinyl ethers
	3.4 Miscellaneous Applications
		3.4.1 Conversion of Epoxides to Halohydrins
		3.4.2 Conversion of Alkyl Halide into Alkyl Thiocyanate
		3.4.3 Synthesis of Cyclic Carbonates
		3.4.4 Rosenmund-Von Braun Reaction
		3.4.5 Synthesis of Poly (Aryl Ether Ketones) (PAEKS)
		3.4.6 Oxidation Reactions
		3.4.7 Diels-Alder Reaction
		3.4.8 Conversion of Oxiranes (epoxides) into Thiiranes
		3.4.9 Beginelli Reaction
		3.4.10 Synthesis of 3-Acetyl-5 [(z) Arylmethylidene] 1,3-Thiazolidine-2,4-diones
		3.4.11 Synthesis of Symmetric Urea Derivatives
		3.4.12 Synthesis of Aryl Amines
		3.4.13 Synthesis of α-aminonitriles
		3.4.14 Synthesis of Homolytic Amines
		3.4.1.5 Conjugate Addition of Thiols to α, β-unsat’d Ketones in [bmin] [PF6]/H2O
		3.4.16 Nucleophilic Displacement Reactions
		3.4.17 Bromination of Alkynes
	3.5 Biotransformations
		3.5.1 Synthesis of Z-Aspartame
		3.5.2 Conversion of 1,3-dicyanobenzene into 3-cyanobenzamide and 3-cyano benzoic acid
		3.5.3 Transesterifications
		3.5.4 Ammoniolysis of Carboxylic Acids
		3.5.5 Synthesis of Geranyl Acetate
		3.5.6 Transesterification of Glucose
		3.5.7 Transesterification of L-Ascorbic Acid
		3.5.8 Enantioselective hydrolysis of a Prochiral Malonic Ester
		3.5.9 Enantioselective Hydrolysis of Naproxen Methyl Ester
		3.5.10 Enantioselective Esterification of Ibuprofen
	Conclusion
	References
4. Transformations in Super Critical Carbon Dioxide
	Contents
	4.1 Introduction
	4.2 Reactions in SC-CO2
		4.2.1 Hydrogenation in Supercritical Carbon Dioxide
		4.2.2 Hydrogenation of Acetophenone
		4.2.3 Semihydrogenation of Dehydroisophytol
		4.2.4 Hydrogenation of Maleic Anhydride
		4.2.5 Asymmetric Hydrogenation of Ethyl Pyruvate
		4.2.6 Enantioselective Hydrogenation of Prochiral a-enamides
		4.2.7 Asymmetric Hydrogenation of β, β-disubstituted enamide
		4.2.8 Hydrogenation of Tiglic Acid
		4.2.9 Enantioselective Hydrogenation of Imines
	4.3 Hydroformylation in Supercritical Carbon Dioxide
		4.3.1 Hydroformylation of Styrene
		4.3.2 Hydroformylation of Acrylates
	4.4 Oxidations in Supercritical Carbondioxide
	4.5 Radical Reactions in Supercritical Carbon Dioxide
		4.5.1 Free Radical Halogenation
		4.5.2 Free Radical Carbonylation of Halides
		4.5.3 Reduction of Bromoadamantane in Sc-CO2
		4.5.4 Radical Cyclisations in Sc-CO2
	4.6 Diels-Alder Reaction in SC-CO2
		4.6.1 Diel-Alder Reaction of Isoprene and Methyl Acrylate
		4.6.2 Diels-Alder Reaction of 2-t-butyl-1,3-butadiene and Methyl Acrylate
		4.6.3. Diels-Alder Reaction of Cyclopentadiene and Ethyl Acrylate Derivatives
		4.6.4 Aza-Diels-Alder Reaction
	4.7 Acid Catalysed Reactions
		4.7.1 Friedel Crafts Alkylation of Aromatics
		4.7.2 Synthesis of Tetrahydrofuran
		4.7.3 Mannich Reaction and Aldol Reaction
		4.7.4 Fridel-crafts Alkylation of Indole Derivatives in Sc-CO2
	4.8 Coupling Reactions
		4.8.1 Heck Reaction
		4.8.2 Still Coupling
		4.8.3 Synthesis of Biaryls
		4.8.4 Carbonylation of 2-iodobenzyl Alcohol
		4.8.5 Carbonylation of n-butylamine
		4.8.6 Wacker Reaction
	4.9 Miscellaneous Reactions in SC-CO2
		4.9.1 Synthesis of 2-pyrones
		4.9.1 Pauson-Khand Reaction
		4.9.2 Asymmetric Cyclopropanation
		4.9.3 Enantioselective Hydrovinylation of Styrene
		4.9.4 Hydroboration of Styrene
		4.9.5 Synthesis of Carbamates
		4.9.6 Synthesis of Vinyl Carbamate
		4.9.7 Baylis-Hillman reaction
		4.9.8 Henry Reaction
		4.9.9 Photochemical Reactions in SC-CO2
	4.10 Enzymatic Transformation in SC-CO2
		4.10.1 Kinetic Resolution of Racemic 3-(4-methoxyphenyl) Glycidic Acid Methyl Ester
		4.10.2 Transesterification of N-acetyl-1-phenylalanine Chloroethyl Ester
		4.10.3 Trans Acetylations of I-O-p-nitrophenyl-β-D-glactopyranoside
		4.10.4 Esterification of Lauric Acid
		4.10.5 Esterification of Citronellol in SC-CO2
		4.10.6 Kinetic Resolution 1-phenylethanol with Vinyl Acetate
		4.10.7 Enantioselective Acetylation of Alcohols in SC-CO2
		4.10.8 Synthesis of Pyrrole-2-carboxylic Acid
		4.10.9 Polymerisations in Sc-CO2
		4.10.10 Formation of Silica Nanoparticles
	Conclusion
	References
5. Transformations in Polyethylene Glycol and its Solutions
	Contents
	5.1 Introduction
	5.2 Use of PEG in Organic Transformations
		5.2.1 Substitution Reactions
		5.2.2 Oxidations
		5.2.3 Reductions
	5.3 PEG as Phase-Transfer Catalysts (PTC)
		5.3.1 Williamsons Ether Synthesis
		5.3.2 Substitution Reactions using PEGs as PTC
		5.3.3 Oxidations using PEG as PTC
		5.3.4 Reductions using PEG as PTC
	5.4 L-Prodine Catalysed Asymmetric Aldol Reactions
	5.5 L-Proline Catalysed Asymmetric Transfer Aldol Reaction
	5.6 Regioselective Heck Reaction
	5.7 Baylis-Hillman Reaction
	5.8 Suzuki Cross Coupling Reaction in PEG
	5.9 Synthesis of azo Compounds using PEG
	5.10 Oxidation of Cyclohexene to Adipic Acid with Hydrogen Peroxide in Presence of Na2WO4 using PEGzNaHSO4
	5.11 Enzymatic Transformations in PEG
	5.12 Some Miscellaneous Reactions in PEG
		5.12.1 Diels-Alder Reaction
		5.12.2 Michael Addition Reaction
		5.12.3 Wacker Oxidation
	Conclusion
	References
6. Transformations in Fluorous Solvents
	Contents
	6.1 Introduction
	6.2 Characteristics of Fluorous Liquids
	6.3 Fluorous Labtelling of Organic Molecules
	6.4 Perfluorinated Catalysts
	6.5 Some Applications of Fluorous Phase Technique
	6.6 Enzymatic Transformations
	Conclusion
	References
7. Miscellaneous Green Solvents
	Contents
	7.1 Introduction
	7.2 Ethyl Lacatate
	7.3 Gamma-Butyrolactone (GBL)
	7.4 Solvents with Switchable Properties
	Conclusion
	References
8. Solvent-free Organic Transformations
	Contents
	8.1 Introduction
	8.2 Solvent-free Organic Transformations by Grinding the Reactants Using Mortar and Pestle
		8.2.1 Aldol Condensation
		8.2.2 Reformatsky Reaction
		8.2.3 Synthesis of 1,4-dihydro-quinoxaline-2,3-dione
		8.2.4 Synthesis of β-keto Sulfones from Ketones
		8.2.5 Synthesis of α-Tosyloxy β-Ketosulfones
		8.2.6 Synthesis of 1-aryl-4-methyl-1, 2, 4-trizolo [4, 3-a]-quinoxalines
		8.2.7 Synthesis of Oximes using Grindstone Chemistry
		8.2.8 Synthesis of Thionocarbamates
		8.2.9 Synthesis of Sym. Triisopropylbenzene
		8.2.10 Baker-Venkataraman Rearrangement
		8.2.11 Synthesis of 1, 4-disubstituted–1, 2, 3-triazoles
	8.3 Solvent Free Organic Transformations using Ball Milling
		8.3.1 Wittig Reaction
		8.3.2 Horner-Wadsworth-Emmons Reaction
		8.3.3 Aldol Condensation
		8.3.4 Knoevenagel Condensation
		8.3.5 Sonogashira Coupling
		8.3.6 Heck Coupling
		8.3.7 Suzuki Coupling
	8.4 Solvent-free Organic Transformations by Heating the Reactants
		8.4.1 Oxidation of Hydroxy Aldehydes and Ketones to Hydroxy Phenols using Urea-Hydrogen Peroxide Adduct (UHP)
		8.4.2 Oxidation of Nitriles to Amides Using UHP
		8.4.3 Selective Oxidation of Sulfides to Sulfoxides or Sulfones
		8.4.4 Oxidation of Nitrogen Heterocycles to N-oxides using UHP
	8.5 Solvent-free Organic Transformations using Clay-Supported Reagents
		8.5.1 Polymerisation of Styrene
		8.5.2 Reaction of Triphenylamine with Na+-montorillonite
		8.5.3 Dehydration of Alcohols
		8.5.4 Synthesis of Dialkyl Amines and Dialkyl Thioethers
		8.5.5 Addition of Terminal Alkenes to Alcohols and Thiols
		8.5.6 Friedel-Crafts Reaction
		8.5.7 Diels-Alder Reaction
		8.5.8 Heck Reaction
		8.5.9 Suzki Coupling
	8.6 Miscellaneous Solvent-free Organic Transformations
		8.6.1 Synthesis of Calix [4] resorcin arene
		8.6.2. Oxidation of Benzophenone with m-CPBA
		8.6.3 Reduction of Ketones to Secondary Alcohols
		8.6.4 Michael Addition
		8.6.5 Photoaddition
		8.6.6 Biginelli Condensation
		8.6.7 Diels-Alder Cycloadditions
		8.6.8 Baylis-Hillman Reaction
		8.6.9 Cannizzaro, Tischenko and Meerwein-Ponndorf-verley Reactions
		8.6.10 Reduction of Substituted Benzaldehydes, Acetophenones and Methyl Benzoates with NaBH4 using HSBM
		8.6.11 Synthesis of S-alkyl Dithiocarbamates
		8.6.12 Asymmetric Hetero-Diels-Alder Reaction
	8.7 Microwave Assisted Solvent free Organic Transformations
	Conclusion
	References
9. Microwave Assisted Organic Transformations
	Contents
	9.1 Introduction
	9.2 Microwave assisted Organic Transformations in Water
		9.2.1 Hofmann Elimination
		9.2.2 Hydrolysis of Benzyl Chloride
		9.2.3 Hydrolysis of Benzamide
		9.2.4 Saponification
		9.2.5 Demethylation
		9.2.6 Oxidation of Side Chains in Aromatic Compounds
		9.2.7 Alkylation of Amines
		9.2.8 Synthesis of Azacycloalkanes
		9.2.9 Synthesis of Isoindolines
		9.2.10 Sonogashira-type Coupling Reaction
		9.2.11 Heck Coupling
		9.2.12 Suzuki Reaction
		9.2.13 Hantzsch Synthesis of 1,4-dihydropyridines
		9.2.14 Synthesis of Deferiprone
		9.2.15 Willgerodt Reaction
		9.2.16 Miscellaneous MW Assisted Organic Transformations in Water
	9.3 Microwave Assisted Organic Transformations in Organic Solvents
		9.3.1 Esterification
		9.3.2 Transesterification
		9.3.3 Cycloaddition Reactions
		9.3.4 Synthesis of Benzodiazepin-2-Ones
		9.3.5 Aromatic Nucleophilic Substitution Reaction
		9.3.6 Pericyclic Reactions
		9.3.7 Reduction of Aldehydes to Alcohols
		9.3.8 Catalytic Transfer Hydrogenation of β-lactam Derivatives
		9.3.9 Fries Rearrangement
		9.3.10 Synthesis of Chalcones
		9.3.11 Decarboxylations
		9.3.12 Suzuki Cross Coupling Reaction
		9.3.13 Miscellaneous Organic Transformations in Organic Solvents
	9.4 Microwave Assisted Reactions in Solid State
		9.4.1 Microwave Assisted Reactions in Solid State by Direct Heating of the Substrates
			9.4.1.1 Reactions involving N-alkylations
			9.4.1.2 Knoevenagel Condensation
			9.4.1.3 Synthesis of bridgehead Nitrogen Heterocycles
			9.4.1.4 Synthesis of 2-oxazolines
			9.4.1.5 Synthesis of Benzimidazole Derivatives
			9.4.1.6 Conversion of 3-nitrophthalic Acid into Nitrophthalimedo butyric Acid (NPB)
			9.4.1.7 Peroxidative Oxidation of Secondary Alcohols to Ketones
			9.4.1.8 Synthesis of Esters from o-alkylisoureas
			9.4.1.9 Ritter Reaction
			9.4.1.10 Synthesis of Indocyanine Dyes
			9.4.1.11 Wittig Reaction
			9.4.1.12 Henry Reaction
			9.4.1.13 Synthesis of 2,3-disubstituted Quinoxalines
			9.4.1.14 Michael Addition
			9.4.1.15 Synthesis of Aspirin
			9.4.1.16 Thionation Reactions: Synthesis of Thioketones, Thiolactones, Thio amides, thioesters and thioflavonoids
			9.4.1.17 Beckmann Rearrangement
		9.4.2 Microwave Assisted Reactions in Solid State using Supported Reagents
			9.4.2.1 Protection/deprotection Reactions
			9.4.2.2 Deprotection of Aldehyde Diacetates
			9.4.2.3 Debenzylation of Carboxylic Esters
			9.4.2.4 Selective Cleavage of N-tert-butoxycarbonyl Group
			9.4.2.5 Deprotection of tert-butyldimethylsilyl Group (TBDMS)
			9.4.2.6 Deprotection of Thioacetals
			9.4.2.7 Deoximation of Oximes
			9.4.2.8 Cleavage of Semicarbazones and Phenyl Hydrazones
			9.4.2.9 Dethiocarbonylation
		9.4.3 Oxidations
			9.4.3.1 Oxidation of Alcohols
			9.4.3.2 Oxidation of Sulfides
			9.4.3.3 Oxidation of Enamines
			9.4.3.4 Oxidation of Arenes
		9.4.4 Reductions
			9.4.4.1 Reduction of Carbonyl Compounds
			9.9.4.2 Reductive Alkylation of Amines
		9.4.5 Pinacol-Pinacolone Rearrangement
		9.4.6 Beckmann Rearrangement
		9.4.7 Synthesis of Substituted Thiazoles
		9.4.8 Synthesis of 2-aroyl benzofurans
		9.4.9 Synthesis of Flavones
		9.4.10 Synthesis of 2-aryl-1,2,3,4-tetrahydro-4-quinolones
		9.4.11 Transformation of Aromatic Aldehydes to Nitriles
		9.4.12 Conversion of Aldehydes to Alcohols
	9.5 Scaling up of Microwave Assisted Transformations
		9.5.1 Introduction
		9.5.2 Suzuki Coupling Reaction
		9.5.3 Hentzsch Synthesis of 1,4-dihydropyridines
		9.5.4 Beckmann Rearrangement
		9.5.5 Synthesis of 2-amino-4-phenyl Thiazole
		9.5.6 Heck Coupling Reaction
		9.5.7 Esterification
		9.5.8 Transesterification
		9.5.9 Synthesis of 2-octene
		9.5.10 Synthesis of Fluorescein
		9.5.11 Du Pont HCN Industrial Process112
		9.5.12 Phenylacylation of 1, 2, 4-triazole
		9.5.13 Synthesis of Ionic Liquids
		9.5.14 Scaling up of MW assisted Reactions using Solvent-Swoll
		9.5.15 Microwave-assisted Deuterium Exchange
		9.5.16 Synthesis of Aspirin
		9.5.17 Synthesis of Paracetamol
		9.5.18 Synthesis of Tetrachlorophthalimidoacetic Acid
		9.5.19 Synthesis of 3-carboxycoumarin
		9.5.20 Synthesis of 2, 3-Dimethyl Indole
		9.5.21 Decarboxylation of Indole-2-carboxylic Acid
		9.5.22 Friedel-Crafts Reaction
		9.5.23 Methylation of Phenols, Indoles and Benzamidazoles
		9.5.24 Synthesis of alkyl-2-(hydroxymethyl) Acrylates
		9.5.25 Depolymerisation of Cellulose
		9.5.26 Rearrangement of 2-benzoyloxyacetophenone
	Bibliography
	Conclusion
	References
10. Ultrasound Assisted Organic Transformations
	Contents
	10.1 Introduction
	10.2 Synthetic Applications
		10.2.1 Esterification
		10.2.2 Saponification
		10.2.3 Solvolysis/Hydrolysis
		10.2.4 Friedel Crafts Reaction
		10.2.5 Substitutions
		10.2.6 1,4-Addition to α, β-unsaturated Carbonyl Compounds
		10.2.7 Cycloadditions
		10.2.8 Hydrogenations
		10.2.9 Coupling Reactions
		10.2.10 Dehalogenations
		10.2.11 Alkylations
			10.2.11.1 N-Alkylations
			10.2.11.2 C-Alkylations
			10.2.11.3 S-Alkylation
			10.2.11.4 O-Alkylation
		10.2.12 Oxidation
		10.2.13 Reduction
		10.2.14 Hydroboration
		10.2.15 Hydrosilation and Hydroalkylation
		10.2.16 Grignard Reagents
		10.2.17 Diels-Alder Cycloaddition Reaction
		10.2.18 Curtius Rearrangement
		12.2.19 Strecker Synthesis
		10.2.20 Cannizzaro Reaction
		10.2.21 Reformatsky Reaction
		10.2.22 Barbier Reaction
		10.2.23 Dieckmann Cyclisation
		10.2.24 Oxymercuration of Olefins
		10.2.25 Condensation Reaction
			10.2.25.1 Synthesis of 3-nitro-2H-Chromenes
			10.2.25.2 Knoevenagel Condensation
			10.2.25.3 Synthesis of Chalcones
			10.2.25.4 Synthesis of Nitroalkenes
			10.2.25.5 Michael Addition
			10.2.25.6 Mannich Reaction
		10.2.26 Synthesis of Heterocycles
			10.2.26.1 Synthesis of 1H-benzotriazoles
			10.2.26.2 Synthesis of Pyrazoles
			10.2.26.3 Biginelli Reaction
			10.2.26.4 Synthesis of 1,5-benzodiazepines
		10.2.27 Coupling Reactions
			10.2.27.1 Heck Reaction
			10.2.27.2 Suzuki Reaction
		10.2.28 Synthesis of Functionalized Aryl Acetylenes
		10.2.29 Synthesis of Imines
	Conclusion
	References
11. Photochemical Organic Transformations
	Contents
	11.1 Introduction
	11.2 Photochemical Transformations
		11.2.1 Synthesis of Benzopinacol
		11.2.2 Photochemical Transformations of Olefins
		11.2.3 Isomerization of Olefins
		11.2.4 Conversion of Maleic Acid into Terebic Acid
		11.2.5 Photoisomerisation of cis and trans stilbenes
		11.2.6 Photochemical Cycloaddition Reactions
		11.2.7 Photoinduced Substitution of Aromatic Compounds
		11.2.8 Photoirridation of dibenzoyldiazomethane in Presence of Amino Acid Derivative
		11.2.9 Photochemical Cycloadditions in Water
		11.2.10 Photochemical Reactions in Solid State
		11.2.11 Synthesis of Allylphenols and allylanisoles
		11.2.12 Synthesis of α-arylpropionic Acid Derivatives
		11.2.13 Synthesis of 13-cis-retionic Acid
		11.2.14 Synthesis of Previtamin D3
		11.2.15 Synthesis of Three-membered Rings
		11.2.16 Synthesis of Cyclobutane Ring
		11.2.17 Synthesis of Five-membered Ring
		11.2.18 Synthesis of Six-membered Rings
		11.2.19 Synthesis of Larger Rings
		11.2.20 Photooxygenation
		11.2.21 Some Industrial Applications of Photochemistry
			11.2.21.1 Free-Radical Reactions
			11.2.21.2 Photochemical Synthesis of Vitamin D and Related Compounds
		11.2.22 Miscellaneous Photochemical Applications
			11.2.22.1 Cleavage of Dithianes and Benzyl Ethers
			11.2.22.2 Hydrolysis of Benzonitrile to Benzamide
			11.2.22.3 Synthesis of 2-substituted pyridines
			11.2.22.4 Conversion of nitrobenzene into phenyl hydroxylamine
			12.2.22.5 Conversion of 4-cyanophenylazide into 4-cyanoaniline
			11.2.22.6 Addition of aldehydes to α, β-unsaturated carbonyl compounds
			11.2.22.7 Synthesis of 1,4-naphthoquinone Photomer
			12.2.22.8 9-Phenyl Phenanthrene
			12.2.22.9 Photochemical Arndt-Eistert Synthesis
			12.2.22.10 Barton Reaction
	Conclusion
	References
12. Organic Transformations using Phase Transfer Catalysts
	Contents
	12.1 Introduction
	12.2 Applications of Phase Transfer Catalysis in Organic Synthesis
		12.2.1 Synthesis of Nitriles
		12.2.2 Synthesis of Isonitriles
		12.2.3 Synthesis of Alkyl Flruorides
		12.2.4 Conversion of Alkyl Halides into Alcohols
		12.2.5 Azides from Alkyl Halides
		12.2.6 Sodium Alkyl Sulphonates from Alkyl Halides
		12.2.7 Alkyl Nitrates, Thiocyanates, Cyanates and p-toluene Sulphonates from Alkyl Halides
		12.2.8 Aryl Ethers and Thioethers
		12.2.9 Esterification
		12.2.10 Saponification
		12.2.11 Dichlorocarbene
		12.2.12 Diazomethane
		12.2.13 Reaction of Dichlorocarbene with Amines
		12.2.14 Reaction of Dichlorobenzene with Substituted Indoles
		12.2.15 Reaction of Dichlorocarbene with Alcohols
		12.2.16 Reaction of Dichlorocarbene with Aldehydes
		12.2.17 Vinylidene Carbenes
		12.2.18 Vinyl Carbenes
		12.2.19 Elimination Reactions
		12.2.20 Carbonylation of Aryl and Vinyl Halides
		12.2.21 Alkylations
			12.2.21.1 O-Alkylations
			12.2.20.2 C-Alkylations
			12.2.21.3 N-Alkylations
			12.2.21.4 S-Alkylations
			12.2.21.5 Alkylation of Mercaptans and Thiophenols
		12.2.22 Benzoin Condensation
		12.2.23 Darzen Reaction
		12.2.24 Michael Reaction
		12.2.25 Williamsons Ether Synthesis
		12.2.26 Wittig Reaction
		12.2.27 Wittig-Horner Reaction
		12.2.28 Sulphur Ylids
		12.2.29 Oxidation
			12.2.29.1 Potassium Permanganate Oxidation
			12.2.29.2 Chromate Oxidation
			12.2.29.3 Hypochlorite Oxidation
			12.2.29.4 Oxidation with Osmium or Ruthenium Oxides in Presence of Periodic Acid
			12.2.29.5 Potassium Ferricyanide Oxidation
			12.2.29.6 Air Oxidations
			12.2.29.7 Oxidation with Peroxides
		12.2.30 Reduction
			12.2.30.1 Hydride Reduction
			12.2.30.2 Reduction by Diborane
			12.2.30.3 Reduction by Formamidine Sulfinic Acid
		12.2.31 Superoxide Anion
		12.2.32 Phase Transfer Catalysts in Pharmaceutical Industry
		Conclusion
	References
13. Biocatalytic Transformations
	Contents
	13.1 Introduction
	13.2 Biocatalysts in Organic Synthesis
		13.2.1 Oxidation
			13.2.1.1 Hydroxylation of Aromatic Rings
			13.2.1.2 Biocatalytic Oxidation of Side Chain in Aromatic Nucleus
			13.2.1.3 Biochemical Oxidation of Secondary Alcohol to Ketones
			13.2.1.4 Biocatalytic Baeyer-Villiger Oxidation
			13.2.1.5 Hydroxylation in Steroids
			13.2.1.6 Oxidation of Hydroxy Ketones to Diones in Steroidal Alcohols
			13.2.1.7 Biochemical Oxidation of Amines
			13.2.1.8 Miscellaneous Oxidations
		13.2.2 Reduction
		13.2.3 Transesterification
		13.2.4 Selective Hydrolysis of Diesters
		13.2.5 Enzymatic Synthesis of Carboxylic Acids, Amides and Nitriles
		13.2.6 Use of Biocatalysts in the Manufacture of Aromatic Compounds
	13.3 Biocatalytic Transformations in Green Solvents
		13.3.1 Biocatalytic Transformations in Ionic Liquids
		13.3.2 Biocatalytic Transformation in Supercritical Carbon dioxide
		13.3.3 Biocatalytic Transformations in Polyethylene Glycol
		13.3.4 Biocatalytic Transformation in Fluorous Solvents
			13.3.4.1 Kinetic Resolution of Rac. 1-phenylethanol
			13.3.4.2 Resolution of 1-(2-naphthyl) Ethanol
			13.3.4.3 Enantioselective Esterification of Rac. α-methylpentanoic acid
	13.4 Miscellaneous Biocatalytic Transformations
	Conclusion
	References
14. Organic Transformations using Supported Catalysts
	Contents
	14.1 Introduction
	14.2 Polymer-Bound Catalysts
		14.2.1 Ion-exchange Resins
		14.2.2 Polymer Supported Catalysts
			14.2.2.1 Polystyrene-Aluminium Chloride Catalyst
			14.2.2.2 Polymeric Super Acid Catalyst
			14.2.2.3 Polymeric Esterolytic Catalyst
			14.2.2.4 Polymer-supported Phase-transfer Catalysts
			14.2.2.5 Polymeric Triphase Catalysts
			14.2.2.6 Polymeric Photosensitizers
	14.3 Supported Metal Complexes
		14.3.1 Polymer-supported Palladium Complexes
		14.3.2 Supported Metal Catalysts
		14.3.3 Organocatalysts
	14.4 Supported Asymmetric Organocatalysts
		14.4.1 Polymer-supported Chiral Amines
	14.5 Polymer-Supported Asymmetric Phase Transfer Catalysts
	14.5a Polymer-Supported Phosphoric Acid Catalyst
	14.6 Solid Supported Catalysts
		14.6.1 Immobilized Palladium Catalyst
		14.6.2 Immobilized Rhodium Catalysts
			14.6.2.1 Cyclopropanation
			14.6.2.2 Conjugate Addition Reactions
			14.6.2.3 Hydrogenation Reactions
			14.6.2.4 Carbonylations
	14.7 Immobilized Ruthenium Catalysts
		14.7.1 Ruthenium Catalysed Metathesis Reactions
		14.7.2 Ruthenium Catalysed Transfer Hydrogenation
		14.7.3 Ruthenium-catalysed Ring Opening of Epoxides
		14.7.4 Ruthenium-catalysed Cyclopropanation Reaction
		14.7.5 Ruthenium-catalysed Halogenation Reactions
	14.8 Immobilized Cobalt Catalyst
	14.9 Immobilized Copper Catalyst
	14.10 Immobilized Iridium Catalysts
	Conclusion
	References
15. Organic Transformations using Green Reagents
	Contents
	15.1 Oxygen
	15.2 Singlet Oxygen
	15.3 Ozone
	15.4 Hydrogen Peroxide
	15.5 Dioxiranes
	15.6 Oxone
	15.7 Peroxy Acids
	15.8 Dimethyl Carbonate
	15.9 Polymer Supported Reagents
		15.9.1 Polymeric-N-Bromosuccinimide (P-NBS)
		15.9.2 Polymeric Organotin Dihydride Reagent
		15.9.3 Poly (4-vinylpyridine) borane
		15.9.4 Polymeric Carbodiimide
		15.9.5 Polymeric Benzene Sulfonyl Chloride
		15.9.6 Polymer Supported Peptide Coupling Reagent EEDQ
		15.9.7 Polymer Supported Peracid
		15.9.8 Polymer Supported Chromic Acid
		15.9.9 S-chlorosulfonium Chloride Resin
		15.9.10 Polymeric Wittig Reagent
		15.9.11 Polymeric Tosyl Azide
		15.9.12 Polymeric Nucleophiles
		15.9.13 Polymer Supported Trisubstituted Phosphine Dichlorides
	15.10 N-Halo Reagents
	15.11 Urea-Hydrogenperoxide Complex
	Conclusion
	References
16. Organic Transformations Using Renewable Starting Materials
	Contents
	16.1 Introduction
	16.2 Biomass as Renewable Starting Material
		16.2.1 Olefins from Biomass
		16.2.2 Alcohols and Carboxylic Acids from Biomass
		16.2.3 Aromatic Compounds from Biomass
		16.2.4 Fats and Oils as a Source of Chemicals
		16.2.5 Synthesis Gas from Biomass
		16.2.6 Conversion of Cellulose into useful Chemicals
	16.3 Synthesis of Useful Products from Carbon Dioxide
	16.4 Useful Products from Methane
	16.5 Biosolvents from Biomass
	Conclusion
	References
17. Electrochemical Synthesis
	Contents
	17.1 Introduction
	17.2 Applications of Electrochemical Synthesis
		17.2.1 Synthesis of Adiponitrile
		17.2.2 Synthesis of Sebacic Acid
		17.2.3 Miscellaneous Applications
	Conclusion
	References
18. Pharmaceutical Industry: Now and Then
	Contents
	18.1 Introduction
	18.2 Green Chemistry in Pharmaceutical Industry
		18.2.1 Computer Aided Drug Designing
		18.2.2 Redesigning The Drug Synthesis
		18.2.3 Reducing the Consumption of Solvents and Choosing Benign Solvents
		18.2.4 Biocatalysts
		18.2.5 Continuous Flow Process
		18.2.6 Semi Synthetic Approach
		18.2.7 Use of Renewable Resources
		18.2.8 Reduction in the Use of Non-renewable Energy
	18.3. Success Stories of Green Pharmaceutical Synthesis
		18.3.1 Synthesis of Amoxicillin1
		18.3.2 Synthesis of Aprepitant2
		18.3.3 Synthesis of Artemisinin3,4,5
		18.3.4 Synthesis of Ibuprofen6,7
		18.3.5 Synthesis of Imatinib8,9,10
		18.3.6 Synthesis of Paracetamol (Acetaminophen)11
		18.3.7 Synthesis of Pregabalin12
		18.3.8 Synthesis of 13-cis-Retinoic Acid13
		18.3.9 Synthesis of Sertraline14
		18.3.10 Synthesis of Sildenafil15,16
		18.3.11 Synthesis of Sevoflurane17
		18.3.12 Examples of Computer Aided Drug Discovery18,19
		18.3.13 Paclitaxel (Taxol)20
		18.3.14 Sterilisation: Greener Alternatives
	Conclusion
	References
19. Polymers
	Contents
	19.1 Introduction
	19.2 Greening the Polymer Industry: Remedial Measures
	19.3 Green Monomer Synthesis
		19.3.1 Synthesis of Adipic Acid2
		19.3.2 Synthesis of Caprolactam3
		19.3.3 Synthesis of Ethylene4
		19.3.4 Synthesis of Ethylene Glycol5
		19.3.5 Synthesis of Terephthalic Acid6
		19.3.6 Styrene and Acrylates from Bio-mass7
	19.4 Green Polymerisation
		19.4.1 Enzyme Catalysed Polymerisations8(a-e)
		19.4.2 Green Solvents fo Polymerisation9(a-f)
		19.4.3 Atom Tranfer Radical Polymerisation10
		19.4.4 Synthesis of Polystyrene11(a,b)
		19.4.5 Green Synthesis of Polyurethane
		19.4.6 Nylon 6,12
		19.4.7 Air Carbon
	19.5 Synthesic of Polyesters
		19.5.1 Polylactic Acid/Polylactide (PLA)12
		19.5.2 Polypropylenefumarate (PPF)13
		19.5.4 Polyethylene Furanoate (PEF)
		19.5.5 Biodegradable Polymers
	19.6 Green Polymer Adhesives
	19.7 Polymer additives
		19.7.1 Flame Retardents
		19.7.2 Stabilizers
		19.7.3 Plasticizers
		19.7.4 Fillers
	19.8 Recycling of Polymers
		19.8.1 Introduction
		19.8.2 Polymer Recycling
		19.8.3 Recycling of PET
		19.8.4 HDPE Recycle
		19.8.5 PVC Recycle
		19.8.6 Nylon-6 Recovery from Carpets
		19.8.7 Recycling of Polycarbonate
		19.8.8 Recycling of Polyethylene (PE) and Polypropylene (PP)
	Conclusion
	References
20. Agrochemicals
	Contents
	20.1 Introduction
	20.2 Synthesis Pesticides
		20.2.1 Organochlorines
		20.2.2 Organophosphate Pesticides
		20.2.3 Pyrethroids
		20.2.4 Carbamates
		20.2.5 Neonicotinoids
	20.3 Herbicides
	20.4 Synthetic Fungicides
	20.5 Green Agrochemicals
	20.6 Green Chemistry and Sustainable Agriculture
	20.7 Controlled Release Agrochemical Formulations
	20.8 Nitrification inhibitors for nitrogen fertilizers
	20.9 Bio-agrochemicals
		20.9.1 Bacillus thuringiensis (Bt)
		20.9.2 Spinosad
		20.9.3 Spinetoram
		20.9.4 Serenade
		20.9.5 Rhamnolipid
		20.9.6 Harpins
	20.10 Bio-fertilisers
	Conclusion
Appendix
	Green Chemistry Academic Programs
	Green Chemistry Organizations
	Green Chemistry Journals
	Green Chemistry Awards
Index




نظرات کاربران