دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Titash Mondal. Anil K. Bhowmick
سری:
ISBN (شابک) : 9781032059778, 9781003200444
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 558
[559]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 110 Mb
در صورت تبدیل فایل کتاب Graphene-Rubber Nanocomposites: Fundamentals to Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوکامپوزیتهای گرافن-لاستیک: مبانی کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اطلاعات و تحقیقات بهروز در مورد نانوکامپوزیتهای گرافن-لاستیک ارائه میکند. شرح مفصلی از کاربردهای مختلف از حسگرها، الکترونیک انعطافپذیر گرفته تا مواد محافظ حرارتی و EMI ارائه میکند. نانوکامپوزیت های لاستیکی مشخصات ترکیب الاستومری مبتنی بر گرافن را پوشش می دهد درک جامعی از ساختار گرافن، از جمله اصلاح شیمیایی آن برای استفاده در کامپوزیت های الاستومری ارائه می دهد.
Provides up-to-date information and research on graphene-rubber nanocomposites Presents a detailed account of the different niche applications ranging from sensors, flexible electronics to thermal, and EMI shielding materials Offers a comprehensive know-how on the structure-property relationship of graphene-rubber nanocomposites Covers the characterization of graphene-based elastomeric composition Delivers a comprehensive understanding of the structure of the graphene, including its chemical modification for usage in elastomer composites
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Editors Contributors Chapter 1 Introduction to Graphene 1.1 Introduction 1.2 History of Graphene 1.3 The Structure and Nomenclature 1.4 Other 2D Nanomaterials 1.5 Synthetic Routes to Graphene and Its Analogues 1.6 Characterization of Graphene 1.7 Graphene Composites 1.7.1 Graphene 2D Heterostructures 1.7.2 Graphene Polymer Composites 1.7.3 Graphene Biocomposites 1.8 Nanotoxicity of Graphene 1.9 Conclusions References Chapter 2 Graphene Synthesis and Characterization for Graphene Nanocomposites 2.1 Introduction 2.2 Graphene Synthesis 2.2.1 Top-Down Synthesis 2.2.1.1 Mechanical Exfoliation 2.2.1.2 Chemical Exfoliation 2.2.2 Bottom-Up Synthesis 2.2.2.1 Chemical Vapor Deposition (CVD) 2.2.2.2 Non-catalytic Epitaxial Growth 2.2.2.3 Organic Synthesis 2.3 Graphene Characterization 2.3.1 Size and Thickness 2.3.2 Defectiveness 2.3.3 Transport Properties 2.3.4 Mechanical Properties 2.4 Conclusion References Chapter 3 Synthesis and Characterization of Graphene from Non-Conventional Precursors 3.1 Introduction 3.2 Synthesis of Graphene 3.2.1 Synthesis of Graphene from Biowaste and Other Biomaterials 3.2.2 Synthesis of Graphene from Food and Food Waste 3.2.3 Synthesis of Graphene from Industrial Waste 3.2.4 In situ Synthesis of Doped Graphene 3.3 Characterization of Graphene 3.3.1 X-ray Diffraction (XRD) 3.3.2 Raman Spectroscopy and Raman Imaging 3.3.3 Thermogravimetric Analysis 3.3.4 X-ray Photoelectron Spectroscopy (XPS) 3.3.5 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) Analysis 3.3.6 High-Resolution Transmission Electron Microscopy (HRTEM) and SAED Selected Area Electron Diffraction (SAED) 3.3.7 Atomic Force Microscopy (AFM) 3.4 Properties and Application of Graphene Prepared from Non-Conventional Sources 3.5 Conclusions References Chapter 4 Functionalization of Graphite and Graphene 4.1 Introduction 4.2 Covalent Functionalization of Graphene and Its Analogs via Carbon-Carbon Bond Formation (Small Molecules) 4.2.1 Functionalization via Diazotization Chemistry 4.2.2 Functionalization via Diels–Alder Reaction 4.2.3 Functionalization via Reaction with Carbene 4.3 Covalent Functionalization of Graphene and Its Analogs via Carbon-Carbon Bond Formation (Macromolecules) 4.3.1 Grafting from Technique 4.3.2 Grafting to Technique 4.4 Covalent Functionalization of Graphene and Its Analogs via Carbon-Nitrogen Bond Formation 4.4.1 Functionalization with Amine 4.4.2 Functionalization with Nitrene 4.5 Other Classes of Modified Graphene 4.5.1 Nitrogen-Doped Graphene 4.5.2 Carboxylated Graphene 4.5.3 Fluorographene 4.6 Conclusions References Chapter 5 Structure-Property Relationships for the Mechanical Behavior of Rubber-Graphene Nanocomposites 5.1 Introduction 5.2 Mechanical Behavior of Rubber 5.3 Reinforcement Mechanisms in Rubber-Graphene Nanocomposites 5.3.1 Interfacial Interactions 5.3.2 Filler Morphology 5.3.3 Strain-Induced Crystallization 5.3.4 Toughening Mechanisms 5.4 Graphene Modification and Functionalization 5.5 Effect of Graphene on Curing Kinetics 5.6 Structural Studies 5.7 Micromechanics, Homogenization, and Constitutive Models 5.8 Outlook and Current Challenges Acknowledgment References Chapter 6 Structure-Property Relationship of Graphene-Rubber Nanocomposite 6.1 Introduction 6.2 Graphene-Based Polymer Composite Materials 6.3 Melt Mixing/Blending 6.4 Solution/Latex Blending 6.5 In Situ Polymerization 6.6 Mechanical Properties 6.7 Tensile Properties 6.8 Dynamic Mechanical Properties 6.9 Preparation of Graphene Polymer Composites 6.10 Preparation of Graphene Rubber Composites 6.11 Characterization of Polymer Nanocomposites 6.12 Dispersion of Graphene Acknowledgments References Chapter 7 Dispersion and Characterization of Graphene in Elastomer Composite 7.1 Introduction 7.2 Dispersion of Graphene in Elastomer Composites 7.3 Characterization of Graphene/Elastomer Composites 7.4 Physical Properties of Graphene/Elastomer Composites 7.5 Conclusions References Chapter 8 Graphene-Based Hybrid Fillers as New Reinforcing Agents in Rubber Compounds for the Tire Industry 8.1 Introduction 8.2 Experimental Section 8.2.1 Materials 8.2.2 Methodology 8.2.3 Characterization of Different Composites 8.3 Result and Discussion 8.3.1 Effect of Loading of Carbon Black Keeping Graphene Level Constant 8.3.2 Effect of Nature of Graphene in Hybrid Filler System 8.3.3 Effect of Loading of Graphene in Hybrid Filler System 8.3.4 Graphene Modified SBR Compound 8.3.5 Comparison of Property Change in Percentage in between NR and SBR 8.3.6 Graphene-Silica Hybrids 8.3.7 Mechanism of Reinforcement by Hybrid Filler 8.4 Conclusions 8.5 Conflict of Interest 8.6 Acknowledgments References Chapter 9 Comprehensive Reviews on the Computational Micromechanical Models for Rubber-Graphene Composites 9.1 Introduction 9.2 Computational Micromechanical Models 9.2.1 Constitutive Models 9.2.2 Geometry Definition of RVE 9.2.3 Boundary Conditions – Loading Cases 9.2.4 Finite Element Modeling 9.3 Results and Discussion 9.4 Concluding Remarks References Chapter 10 Simulation of Graphene Elastomer Composites 10.1 Introduction 10.1.1 What Is MD? 10.1.2 Potentials in MD 10.1.3 Ensembles in MD 10.1.4 Thermostats 10.2 Molecular Dynamics Methodology 10.2.1 Modeling of Materials 10.2.2 Modeling for Elastic Moduli, Tensile Behavior, and T[sub(g)] 10.2.3 Modeling for Pull-Out of Graphene(Gr) from NR 10.3 Results and Discussion 10.3.1 Mechanical Properties 10.3.2 Glass Transition Temperature 10.3.3 Interfacial Properties 10.4 Conclusions References Chapter 11 Graphene-Elastomer Composites for Barrier Applications 11.1 Introduction 11.2 The Effect of Graphene on the Air Permeability of the Rubber Composites 11.3 Various Rubber Materials Used for Barrier Applications 11.3.1 Butyl Rubber 11.3.1.1 Halogenated Butyl Rubber 11.3.2 Epoxidized Natural Rubber (ENR) 11.3.3 Polyepichlorohydrin Rubber (ECH) 11.4 Preparation of Graphene-Elastomer Composites Through Different Methods 11.5 Graphene in Butyl Rubber (IIR)-Halogenated Butyl Rubber (X)IIR and Their Blends 11.5.1 IIR/Graphene-Rubber Nanocomposites 11.5.1.1 CIIR/Graphene-Rubber Nanocomposites 11.5.1.2 BIIR/Graphene Nanocomposites 11.5.2 Bromobutyl Rubber/Epoxidized Natural Rubber/Graphene-Rubber Nanocomposites 11.5.3 Bromobutyl Rubber/Polyepichlorohydrin Rubber/Graphene-Rubber Nanocomposites 11.5.4 Synergism of Various Nanofillers for Improving the Dispersion of Graphene in BIIR 11.6 Summary References Chapter 12 Graphene-Thermoplastic Polyurethane Elastomer Composites: Fundamentals and Applications 12.1 Introduction 12.2 Graphene and Graphene-Based Materials 12.2.1 Graphene Oxide (GO) 12.2.2 Reduced Graphene Oxide (RGO) 12.2.3 Graphite Nanoplatelets (GNPs) 12.3 Thermoplastic Polyurethane Elastomer (TPE) 12.4 Synthesis Methodologies of Graphene/TPU Nanocomposite 12.4.1 In situ Polymerization 12.4.2 Solution Mixing 12.4.3 Melt Mixing 12.4.4 Other Methods 12.5 Microstructure of Nanocomposites 12.6 Properties of Graphene/TPU Nanocomposites 12.6.1 Mechanical Properties 12.6.1.1 Tensile Properties 12.6.1.2 Dynamic Mechanical Property 12.6.2 Thermal Properties 12.6.2.1 Thermal Stability 12.6.2.2 Thermal Conductivity 12.6.3 Electrical Properties 12.6.3.1 Electrical Conductivity 12.6.3.2 Dielectric Properties 12.6.4 EMI Shielding Property 12.6.5 Barrier Property 12.6.6 Flame and Fire Retardant Property 12.6.7 Shape Memory Property 12.7 Potential Applications of Graphene/TPU Nanocomposites 12.7.1 Solar Water Desalination 12.7.2 Water Purification 12.7.3 Smart Textiles and Wearable Electronics 12.7.4 Oil Spill Cleaning 12.7.5 Self-Healing Coating 12.7.6 Corrosion- and Abrasion-Resistant Coating 12.7.7 Antibacterial Coating 12.7.8 Biomedical Applications 12.7.9 Sensor Application 12.7.10 Other Applications 12.8 Conclusions References Chapter 13 Role of Graphene in Tire Tread Wear Improvement 13.1 Introduction 13.1.1 Role of Filler in Rubber Compounds 13.1.2 Development of Advanced Composites with New Generation Filler 13.2 Materials and Experiments 13.2.1 Preparation of Graphene Nanocomposites 13.2.2 Method of Preparation and Mixing Sequence 13.2.3 Characterization of Fillers and Rubber Composites 13.2.3.1 Fourier Transform Infrared (FTIR) Analysis Spectroscopic 13.2.3.2 X-Ray Diffraction (XRD) Analysis 13.2.3.3 Transmission Electron Microscopy (TEM) Analysis 13.2.3.4 Field Emission Scanning Electron Microscopy (FESEM) Analysis 13.2.3.5 Atomic Force Microscopy (AFM) Analysis 13.2.3.6 Measurement of Cure Characteristics 13.2.3.7 Measurement of Physical Properties 13.2.3.8 Dynamic Mechanical Properties 13.2.3.9 Measurement of Wear Resistance by Laboratory Abrasion Tester-100 (LAT-100) 13.3 Results and Discussion 13.3.1 Measurement of Surface Functionality through FTIR 13.3.2 Crystallographic Studies of Graphene and Rubber Nanocomposites 13.3.3 TEM Analysis of Graphene and Rubber Composites 13.3.4 FESEM Analysis of Graphene and Rubber Composites 13.3.5 AFM Analysis of Rubber Composites 13.3.6 Effect of Graphene on Processing Parameters 13.3.7 Effect of Graphene on Physico-Mechanical Properties 13.3.8 Effect of Graphene on Wear Resistance 13.4 Conclusions Acknowledgments References Chapter 14 Graphene-Based Elastomer Nanocomposites: A Fascinating Material for Flexible Sensors in Health Monitoring 14.1 Introduction 14.2 Strain Sensors Based on Graphene/Elastomer Nanocomposite 14.3 Humidity and Glucose Detection Sensors 14.4 Temperature Sensors 14.5 Piezoresistive Sensors Based on Graphene/Elastomer Nanocomposite 14.6 Summary Acknowledgment References Chapter 15 Thermally Conducting Graphene-Elastomer Nanocomposites: Preparation, Properties, and Applications 15.1 Introduction 15.2 Thermally Conductive Elastomeric Composites 15.3 Limitations of Thermally Conductive Elastomeric Composites 15.4 Graphene Elastomeric Composite Preparation 15.4.1 Melt Mixing 15.4.2 Two-Roll Milling/Internal Mixing 15.4.3 Solution/Latex Stage Mixing 15.4.4 In situ Polymerisation 15.4.5 Electrospinning 15.5 Thermally Conducting Graphene/Elastomeric Composites 15.6 Mechanisms of Thermal Conductivity of Graphene/Elastomeric Composites 15.7 Surface Modification of Graphene vs. Thermal Conductivity 15.7.1 Composition of Graphene 15.7.2 Graphene Elastomer Interface 15.7.3 Orientation of Graphene in Elastomeric Matrix 15.8 Applications 15.9 Conclusions References Chapter 16 Graphene-Elastomer Composite for Energy Storage Applications 16.1 Introduction 16.2 Graphene Nanofillers 16.2.1 Preparation Methods 16.2.1.1 Bottom-Up Approach 16.2.1.2 Top-Down Approach 16.2.2 Physicochemical Properties 16.2.2.1 Mechanical Properties 16.2.2.2 Thermal Conductivity 16.2.2.3 Electrical Conductivity 16.2.3 Terminologies of Graphene-Based Materials 16.3 Graphene-Elastomer Composites 16.3.1 Preparation Methods 16.3.1.1 In situ Polymerization 16.3.1.2 Solution/Latex Blending 16.3.1.3 Melt Mixing 16.3.2 Physicochemical Properties 16.3.2.1 Mechanical and Dynamic Mechanical Properties 16.3.2.2 Thermal Conductivity 16.3.2.3 Electrical Properties 16.3.2.4 Dielectric Properties 16.4 Elastomer-Graphene Composites for Energy Storage Applications 16.4.1 Dielectric Capacitors 16.4.2 Supercapacitors 16.4.3 Rechargeable Batteries 16.4.4 Thermal Energy Storage Systems 16.5 Conclusions References Chapter 17 Graphene-Elastomer Composite for Biomedical Applications 17.1 Introduction 17.2 Synthesis of Graphene 17.2.1 ‘Top-Down’ Method 17.2.1.1 Mechanical Exfoliation 17.2.1.2 Chemical Exfoliation 17.2.1.3 Thermal Exfoliation 17.2.2 Bottom-Up Process 17.3 Preparation of Graphene-Elastomer Nanocomposites 17.3.1 Melt Mixing Process 17.3.2 Solution Mixing 17.3.3 In situ Process 17.4 Surface Modification and Functionalization of Graphene 17.5 Use of Graphene-Elastomer in Various Fields of Biomedical Applications 17.5.1 Nanocomposites for Biomedical Application 17.5.2 Graphene and Graphene-Based Elastomeric Nanocomposites as Nanocarrier in Therapeutic Application 17.5.2.1 Graphene and Graphene-Based Elastomer for Drug Delivery 17.5.2.2 DNA/RNA Delivery 17.5.2.3 Gene Delivery 17.5.3 Tissue Engineering 17.5.3.1 Bone Regeneration 17.5.3.2 Nerve Tissue Regeneration 17.5.3.3 Cardiac and Vascular Tissue Engineering 17.5.4 Antibacterial Agent 17.5.5 Bioimaging 17.5.6 Biosensors 17.6 Conclusions and Future Prospects References Chapter 18 Graphene-Elastomer Nanocomposites for Electromagnetic Interference (EMI) Shielding Applications 18.1 Introduction 18.2 EMI Shielding Phenomenon 18.3 EMI Shielding Process and Mechanisms 18.3.1 Types of EMI Shielding Mechanisms 18.3.2 Theory of EMI Shielding 18.3.2.1 Absorption Loss (SE[sub(A)]) 18.3.2.2 Reflection Loss (SE[sub(R)]) 18.3.2.3 Multiple Reflections (SE[sub(M)]) 18.4 EMI Shielding Materials 18.4.1 Polymer Composites for EMI Shielding 18.4.2 Polymer Nanocomposites (PNCs) for EMI Shielding 18.5 Graphene: Electronic Structure and Electrical Properties 18.6 Synthesis of Graphene 18.7 Preparation Methods of Graphene-Elastomer Nanocomposites for EMI Shielding Applications 18.8 Recent Progress in Graphene-Elastomer Nanocomposites for EMI Shielding 18.9 Conclusions and Outlooks References Index