دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: A. Rashid bin Mohd Yusoff سری: ISBN (شابک) : 3527338063, 9783527338061 ناشر: Wiley-VCH سال نشر: 2015 تعداد صفحات: 463 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب انرژی های مبتنی بر گرافن: رشته های ویژه، نانومواد و فناوری نانو، علم نانومواد، نانومواد کربنی
در صورت تبدیل فایل کتاب Graphene-based Energy Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انرژی های مبتنی بر گرافن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این اولین کتابی که به این موضوع اختصاص دارد، گزارشی به روز از
فرصت های زیادی که گرافن برای تولید و ذخیره انرژی قوی و قابل
اجرا ارائه می دهد، ارائه می دهد.
پس از مروری کوتاه بر اصول گرافن، از جمله تکنیک های اصلی سنتز،
روشها و خصوصیات خصوصیات، بخش اول به گرافن برای کاربردهای
ذخیرهسازی انرژی، مانند باتریهای لیتیوم یون، ابرخازنها و
ذخیرهسازی هیدروژن میپردازد. بخش دوم مربوط به دستگاههای تولید
انرژی مبتنی بر گرافن، بهویژه سلولهای سوختی معمولی، میکروبی و
آنزیمی است، که فصلهایی در مورد فتوولتائیک گرافن گردآوری شده
است. در سرتاسر، معماری دستگاه تنها در مقیاس آزمایشگاهی مورد بحث
قرار نمیگیرد، بلکه راههایی برای ارتقاء مقیاس به سطح صنعتی، از
جمله فرآیندهای تولید و کنترل کیفیت نیز مورد بحث قرار
میگیرد.
با ایجاد پل ارتباطی بین تحقیقات دانشگاهی و توسعه صنعتی، این
مطالعه ارزشمند برای دانشمندان مواد، شیمی دانان فیزیک،
الکتروشیمیدانان، فیزیکدانان حالت جامد، و کسانی که در صنعت
الکتروتکنیک کار می کنند، می باشد.
This first book dedicated to the topic provides an up-to-date
account of the many opportunities graphene offers for robust,
workable energy generation and storage devices.
Following a brief overview of the fundamentals of graphene,
including the main synthesis techniques, characterization
methods and properties, the first part goes on to deal with
graphene for energy storage applications, such as lithium-ion
batteries, supercapacitors and hydrogen storage. The second
part is concerned with graphene-based energy-generation
devices, in particular conventional as well as microbial and
enzymatic fuel cells, with chapters on graphene photovoltaics
rounding off the book. Throughout, device architectures are not
only discussed on a laboratory scale, but also ways for
upscaling to an industrial level, including manufacturing
processes and quality control.
By bridging academic research and industrial development this
is invaluable reading for materials scientists, physical
chemists, electrochemists, solid state physicists, and those
working in the electrotechnical industry.
List of Contributors XIII Preface XIX 1 Fundamental of Graphene 1 Seong C. Jun 1.1 Introduction 1 1.2 Synthesis of Graphene 3 1.2.1 Mechanical Cleavage 3 1.2.2 Epitaxial Growth 4 1.2.3 CVD Growth of Graphene 4 1.2.4 Solution-Based Graphene 5 1.2.5 Synthesis of Composite Material Based on Graphene Oxide 8 1.3 Characterization of Graphene 12 1.3.1 AFM (Atomic Force Microscopy) 14 1.3.2 SEM 16 1.3.3 TEM/SEAD/EELS 16 1.3.4 XPS 20 1.3.5 XRD 21 1.3.6 Raman 23 1.3.7 Photoluminesces (PL) Measurement 23 1.4 Optical Property Modification of Graphene 25 1.4.1 Absorption Property Modification of Graphene (Terahertz, UV–Visible–NIR) 25 1.4.2 PL Property Modification of Graphene 29 1.5 Optoelectric Application of Graphene 39 References 45 2 Graphene-Based Electrodes for Lithium Ion Batteries 49 RonghuaWang,Miaomiao Liu, and Jing Sun 2.1 Introduction 49 2.2 TheWorking Principle of LIBs 50 2.3 Graphene-Based Cathode Materials for LIBs 51 2.4 Graphene-Based Anode Materials for LIBs 53 2.4.1 Graphene as Anodes for LIBs 54 2.4.2 Graphene-Based Composites as Anodes for LIBs 56 2.5 Two-Dimensional (2D) Flexible and Binder-Free Graphene-Based Electrodes 67 2.5.1 Graphene-Based Flexible Anode Materials for LIBs 67 2.5.2 Graphene-Based Flexible Cathode Materials for LIBs 73 2.6 Three-Dimensional Macroscopic Graphene-Based Electrodes 74 2.7 Summary and Perspectives 78 References 79 3 Graphene-Based Energy Devices 85 Wei-Ren Liu 3.1 Introduction 85 3.2 Graphene for Li-Ion Batteries 85 3.2.1 Anode Materials 85 3.2.2 Cathode Materials 100 3.3 Graphene for Supercapacitors 105 3.4 Graphene for Li–Sulfur Batteries 111 3.5 Graphene for Fuel Cells 114 3.6 Graphene for Solar Cells 116 3.7 Summary 118 References 118 4 Graphene-Based Nanocomposites for Supercapacitors 123 Xuanxuan Zhang, Tao Hu, andMing Xie 4.1 Introduction 123 4.2 Graphene-Based Supercapacitors 124 4.2.1 EDLCs 125 4.2.2 Graphene/Metal Oxide Nanocomposites 128 4.2.3 Graphene/Conducting Polymer Composites 129 4.2.4 Atomic Layer Deposition for Graphene/Metal Oxide Nanocomposites 134 4.3 Issues and Perspectives 136 References 138 5 High-Performance Supercapacitors Based on Novel Graphene Composites 145 Junwu Xiao, Yangyang Xu, and Shihe Yang 5.1 Introduction 145 5.2 Graphene Synthesis Methods 148 5.2.1 The “Top-Down” Approach 148 5.2.2 The “Bottom-Up” Approach 150 5.3 Graphene-Based Electrodes for Supercapacitors 151 5.3.1 Graphene 151 5.3.2 Graphene-Based Composites 152 5.4 Conclusions and Prospects 165 References 166 6 Graphene for Supercapacitors 171 Richa Agrawal, Chunhui Chen, Yong Hao, Yin Song, and ChunleiWang 6.1 Introduction 171 6.1.1 Electrochemical Capacitors 171 6.1.2 Graphene as a Supercapacitor Material 175 6.2 Electrode Materials for Graphene-Based Capacitors 176 6.2.1 Double-Layer Capacitance-Based Graphene Electrode Materials 176 6.2.2 Graphene/Pseudocapacitive Material Composite Based Electrode Materials 183 6.3 Graphene-Based Asymmetric Supercapacitors 189 6.3.1 Asymmetric Capacitors Based on Graphene and Pseudocapacitive Materials 193 6.3.2 Graphene-Based Lithium-Ion Capacitors 195 6.4 Graphene-Based Microsupercapacitors 199 6.5 Summary and Outlook 204 Acknowledgments 205 References 205 7 Graphene-Based Solar-DrivenWater-Splitting Devices 215 Jian Ru Gong 7.1 Introduction 215 7.2 Basic Architectures of Solar-DrivenWater-Splitting Devices 216 7.3 Promising Prospects of Graphene in Solar-DrivenWater-Splitting Devices 217 7.4 Graphene-Based Integrated Photoelectrochemical Cells 219 7.5 Graphene-Based Mixed-Colloid Photocatalytic Systems 227 7.6 Graphene-Based Photovoltaic/Electrolyzer Devices 235 7.7 Conclusions and Perspectives 241 References 241 8 Graphene Derivatives in Photocatalysis 249 Luisa M. Pastrana-Martínez, Sergio Morales-Torres, José L. Figueiredo, Joaquim L. Faria, and Adrián M.T. Silva 8.1 Introduction 249 8.2 Graphene Oxide and Reduced Graphene Oxide 250 8.2.1 Synthesis 250 8.2.2 Properties 252 8.3 Synthesis of Graphene-Based Semiconductor Photocatalysts 254 8.3.1 Mixing Method 255 8.3.2 Sol–Gel Process 255 8.3.3 Hydrothermal and Solvothermal Methods 256 8.4 Photocatalytic Applications 257 8.4.1 Photodegradation of Organic Pollutants 258 8.4.2 Photocatalytic Splitting of H2O 262 8.4.3 Photocatalytic Reduction of CO2 264 8.4.4 Other Applications: Dye-Sensitized Solar Cells 266 8.5 Conclusions and Outlook 267 Acknowledgments 268 References 268 9 Graphene-Based Photocatalysts for Energy Applications: Progress and Future Prospects 277 WanjunWang, Donald K.L. Chan, and Jimmy C. Yu 9.1 Introduction 277 9.1.1 Synthesis of Graphene-Based Photocatalysts 278 9.1.2 Ex Situ Hybridization Strategy 279 9.1.3 In Situ Growth Strategy 279 9.2 Energy Applications 283 9.2.1 Photocatalytic Hydrogen Evolution 283 9.2.2 Photocatalytic Reduction of Carbon dioxide 285 9.2.3 Environmental Remediation 286 9.3 Conclusions and Outlook 287 References 288 10 Graphene-Based Devices for Hydrogen Storage 295 HouWang and Xingzhong Yuan 10.1 Introduction 295 10.2 Storage of Molecular Hydrogen 297 10.2.1 Graphene-Based Metal/Metal Oxide 299 10.2.2 Doped Graphene 300 10.3 Storage of Atomic Hydrogen Based on Hydrogen Spillover 301 References 304 11 Graphene-Supported Metal Nanostructures with Controllable Size and Shape as Advanced Electrocatalysts for Fuel Cells 307 Minmin Liu andWei Chen 11.1 Introduction 307 11.2 Fuel Cells 308 11.2.1 Configuration and Design of PEMFCs 309 11.2.2 Direct Methanol Fuel Cells (DMFCs) 310 11.2.3 Direct Formic Acid Fuel Cells (DFAFCs) 313 11.2.4 Direct Alcohol Fuel Cells (DAFCs) and Biofuel Cells 314 11.3 Graphene-Based Metal Nanostructures as Electrocatalysts for Fuel Cells 315 11.3.1 Graphene-Supported Metal Nanoclusters 315 11.3.2 Graphene-Supported Monometallic and Alloy Metal Nanoparticles (NPs) 317 11.3.3 Graphene-Supported Core–shell Nanostructures 321 11.3.4 Graphene-Supported Hollow Nanostructures 322 11.3.5 Graphene-Supported Cubic Nanostructures 325 11.3.6 Graphene-Supported Nanowires and Nanorods 326 11.3.7 Graphene-Supported Flower-Like Nanostructures 329 11.3.8 Graphene-Supported Nanodendrites 331 11.3.9 Other Graphene-Supported 2D or 3D Nanostructures 333 11.4 Conclusions 333 Acknowledgments 334 References 335 12 Graphene-BasedMicrobial Fuel Cells 339 Yezhen Zhang and Jian S. Ye 12.1 Introduction 339 12.2 MFC 340 12.2.1 TheWorking Principle of MFC 340 12.2.2 The Advantages of MFCs 341 12.2.3 The Classification of MFCs 342 12.3 The Development History of MFCs 345 12.4 The Application Prospect of MFC 346 12.4.1 Micro Batteries Embedded in the Body 346 12.4.2 Mobile Power Supply 346 12.4.3 Photosynthesis to Produce Electricity 346 12.4.4 Biosensor 347 12.4.5 Power Supply in Remote Areas or Open Sea 347 12.4.6 Treatment of OrganicWastewater 347 12.5 Problems Existing in the MFCs 348 12.6 Graphene-Based MFC 348 12.6.1 Anode 348 12.6.2 Membrane 350 12.6.3 Cathode 350 References 351 13 Application of Graphene-Based Materials to Improve Electrode Performance in Microbial Fuel Cells 355 Li Xiao and Zhen He 13.1 Introduction 355 13.2 Graphene Materials for Anode Electrodes in MFCs 357 13.2.1 Graphene Nanosheets 357 13.2.2 Three-Dimensional Graphene 359 13.2.3 Graphene Oxide 361 13.3 Graphene Materials for Cathode Electrodes in MFCs 361 13.3.1 Bare Graphene 362 13.3.2 Polymer Coating with Graphene as a Dopant 363 13.3.3 Metal Coating with Graphene as a Supporter 363 13.3.4 Nitrogen-Doped Graphene 364 13.4 Outlook 366 References 367 14 Applications of Graphene and Its Derivative in Enzymatic Biofuel Cells 371 A. Rashid bin Mohd Yusoff 14.1 Introduction 371 14.2 Membraneless Enzymatic Biofuel Cells 372 14.3 Modified Bioanode and Biocathode 375 14.3.1 Electrochemically Reduced Graphene Oxide and Multiwalled Carbon Nanotubes/Zinc Oxide 375 14.3.2 Graphene/Single-Walled Carbon Nanotubes 376 14.4 Conclusion 376 Acknowledgment 377 References 377 15 Graphene and Its Derivatives for Highly Efficient Organic Photovoltaics 379 Seung J. Lee and A. Rashid bin Mohd Yusoff 15.1 Introduction 379 15.2 Various Applications in Solar Cells 380 15.2.1 Conductive Electrodes 380 15.2.2 Active Layer 385 15.2.3 Charge Transport Layer 390 15.2.4 Electron Transport Layer 395 15.3 Conclusion 402 Acknowledgment 402 References 402 16 Graphene as Sensitizer 407 Mohd A. Mat-Teridi, Mohd A. Ibrahim, Norasikin Ahmad-Ludin, Siti Nur Farhana Mohd Nasir, Mohamad Yusof Sulaiman, and Kamaruzzaman Sopian 16.1 Graphene as Sensitizer 407 16.2 Graphene as Storage Current Collector 410 16.2.1 Anode Current Collector 411 16.2.2 Cathode Current Collector 413 16.3 Graphene as Photoanode Additive 415 16.3.1 DSSC Application 415 16.3.2 OPV Application 416 16.3.3 Lithium-Ion Battery 417 16.3.4 Sensor Application 418 16.3.5 Transparent Conductive Films 419 16.3.6 Photocatalytic Application 420 16.4 Graphene as Cathode Electrocatalyst 420 16.4.1 N-Doped Graphene 421 16.4.2 B-, P-, S-, and Se-Doped Graphene 422 16.5 Conclusions 423 Acknowledgment 424 References 424 Index 431