دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Timothy Eastridge
سری:
ISBN (شابک) : 9788197081965
ناشر: Orange Education Pvt Ltd, AVA™
سال نشر: 2024
تعداد صفحات: 204
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Graph Data Science با Python و Neo4j: پروژه های عملی در Python و Neo4j یکپارچه سازی برای تجسم و تجزیه و تحلیل داده ها با استفاده از علم داده های نمودار برای ایجاد استراتژی های سازمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Graph Data Science with Python and Neo4j is your ultimate guide to unleashing the potential of graph data science by blending Python's robust capabilities with Neo4j's innovative graph database technology. From fundamental concepts to advanced analytics and machine learning techniques, you'll learn how to leverage interconnected data to drive actionable insights. Beyond theory, this book focuses on practical application, providing you with the hands-on skills needed to tackle real-world challenges. You'll explore cutting-edge integrations with Large Language Models (LLMs) like ChatGPT to build advanced recommendation systems. With intuitive frameworks and interconnected data strategies, you'll elevate your analytical prowess. This book offers a straightforward approach to mastering graph data science. With detailed explanations, real-world examples, and a dedicated GitHub repository filled with code examples, this book is an indispensable resource for anyone seeking to enhance their data practices with graph technology. Join us on this transformative journey across various industries, and unlock new, actionable insights from your data.