دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Qi Xuan
سری:
ISBN (شابک) : 9789811626098, 981162609X
ناشر: Springer Nature
سال نشر: 2021
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 Mb
در صورت تبدیل فایل کتاب Graph Data Mining: Algorithm, Security and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داده کاوی گرافیکی: الگوریتم ، امنیت و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface References Acknowledgment Contents 1 Information Source Estimation with Multi-Channel Graph Neural Network 1.1 Introduction 1.2 Related Work 1.2.1 Information Diffusion Modeling 1.2.2 Information Source Detection 1.2.3 Graph Neural Network 1.3 Preliminaries 1.3.1 Problem Definition 1.4 Multi-Channel Graph Neural Network 1.4.1 Feature Indices of Input 1.4.1.1 Structural Features 1.4.1.2 Prior Knowledge Features 1.4.2 Graph Convolutional Networks 1.4.3 Architecture of MCGNN 1.4.4 Loss Function 1.5 Experiment 1.5.1 Datasets and Experimental Setup 1.5.2 Baselines and Evaluation Metrics 1.5.3 Results on the Synthetic Networks 1.5.4 Results on the Real-World Networks 1.6 Conclusion References 2 Link Prediction Based on Hyper-Substructure Network 2.1 Introduction 2.2 Existing Link Prediction Methods 2.2.1 Heuristic Methods 2.2.2 Embedding-Based Methods 2.2.3 Deep Learning-Based Models 2.3 Methodology 2.3.1 Problem Formulation 2.3.2 Neighborhood Normalization 2.3.3 HSN Construction 2.3.4 HELP 2.4 Experiment 2.4.1 Datasets 2.4.2 Link Prediction Methods for Comparison 2.4.3 Evaluation Metrics 2.4.4 Experimental Settings 2.4.5 Link Prediction Results 2.4.6 Parameter Sensitivity 2.5 Conclusion References 3 Broad Learning Based on Subgraph Networks for Graph Classification 3.1 Introduction 3.2 Related Work 3.2.1 Subgraph Networks 3.2.2 Network Representation 3.2.3 Broad Learning System 3.3 Subgraph Networks 3.3.1 First-Order SGN 3.3.2 Second-Order SGN 3.4 Sampling Subgraph Networks 3.4.1 Sampling Strategies 3.4.1.1 Biased Walk (BW) 3.4.1.2 Spanning Tree (ST) 3.4.1.3 Forest Fire (FF) 3.4.2 Construction of S2GN 3.5 BLS Classifier Based on S2GN 3.5.1 BLS Classifier 3.5.2 Classification Framework 3.6 Experiment 3.6.1 Graph Classification 3.6.2 Datasets 3.6.3 Network Representation 3.6.4 SGN for Graph Classification 3.6.5 S2GN for Graph Classification 3.7 Computational Complexity 3.8 Conclusion References 4 Subgraph Augmentation with Application to Graph Mining 4.1 Introduction 4.2 Related Work 4.2.1 Graph Classification 4.2.1.1 Graph Kernel Methods 4.2.1.2 Embedding Methods 4.2.1.3 Deep Learning Methods 4.2.2 Data Augmentation in Graph Learning 4.3 The Model Evolution Framework for Graph Classification 4.3.1 Problem Formulation 4.3.2 Subgraph Augmentation 4.3.2.1 Random Mapping 4.3.2.2 Motif-Similarity Mapping 4.3.3 Data Filtration 4.3.4 Model Evolution Framework 4.4 Application of Subgraph Augmentation 4.4.1 Graph Classification 4.4.1.1 Experimental Setting 4.4.2 Link Prediction 4.4.2.1 Subgraph Extraction 4.4.2.2 Experimental Setting 4.4.3 Node Classification 4.4.3.1 Subgraph Extraction 4.4.3.2 Experimental Setting 4.4.4 Experimental Results 4.5 Conclusion References 5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 5.1 Background 5.2 Adversarial Attack 5.2.1 Problem Definition 5.2.2 Taxonomies of Attacks 5.3 Attack Strategy 5.3.1 Node Classification 5.3.1.1 NETTACK 5.3.1.2 Meta Attack 5.3.1.3 Experiment of Results 5.3.2 Link Prediction 5.3.2.1 Heuristic Attack 5.3.2.2 Gradient-Based Attack 5.3.2.3 Experiment of Results 5.3.3 Graph Classification 5.3.3.1 Hierarchical Reinforcement Learning Attack 5.3.3.2 Experimental Result 5.3.4 Community Detection 5.3.4.1 GA-Based Q-Attack 5.3.4.2 Experiment Result 5.4 Conclusion References 6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 6.1 Introduction 6.2 Adversarial Training 6.2.1 Graph Adversarial Training 6.2.2 SAT 6.3 Graph Purification 6.3.1 GCN-Jaccard 6.3.2 GCN-SVD 6.4 Robustness Certification 6.4.1 Certifying Robustness for Graph Structure Perturbations 6.4.2 Certifying Robustness for Node Attributes Perturbations 6.4.3 Certifiable Robustness in Community Detection 6.5 Structure Based Defense 6.5.1 Penalized Aggregation GNN 6.5.2 Robust Graph Convolutional Network 6.6 Adversarial Detection 6.6.1 Adversarial Detection on Node Classification 6.6.2 Adversarial Detection on Graph Classification 6.6.2.1 SGN Based Adversarial Detection 6.6.2.2 Joint Adversarial Detection 6.7 Summary of Defenses 6.8 Experiment and Analyze 6.8.1 Adversarial Training 6.8.2 Adversarial Detection 6.9 Conclusion References 7 Understanding Ethereum Transactions via Network Approach 7.1 Introduction 7.2 Ethereum Transaction Dataset 7.3 Graph Embedding Techniques 7.3.1 Factorization Based Methods 7.3.2 Random Walk Based Methods 7.3.3 Deep Learning Based Methods 7.3.4 Other Methods 7.4 The Proposed Method 7.4.1 Basic Definition 7.4.2 Temporal Biased Walk 7.4.3 Learning Temporal Graph Embeddings 7.5 Experiment 7.5.1 Node Classification 7.5.1.1 Evaluation Metrics 7.5.1.2 Experimental Results 7.5.2 Link Prediction 7.5.2.1 Evaluation Metrics 7.5.2.2 Experimental Results 7.6 Conclusion 7.7 Appendix 7.7.1 Similarity Indices References 8 Find Your Meal Pal: A Case Study on Yelp Network 8.1 Introduction 8.2 Data Description and Preprocessing 8.3 Link Prediction Methods 8.3.1 Similarity Indices Assembly 8.3.2 Variational Graph Auto-Encoder 8.4 Experiments 8.5 Experiment Setup 8.5.1 Friends Recommendation 8.5.2 Co-foraging Prediction 8.6 Conclusion References 9 Graph Convolutional Recurrent Neural Networks: A Deep Learning Framework for Traffic Prediction 9.1 Background 9.2 Related Work 9.2.1 Graph Analysis 9.2.2 Traffic State Prediction 9.3 Model 9.3.1 Graph Convolutional Network 9.3.2 Long Short-Term Memory 9.3.3 Graph Convolutional Recurrent Neural Network 9.4 Experiment 9.4.1 Dataset 9.4.2 Baselines 9.4.3 Evaluation 9.4.4 Evaluation 9.4.5 Results of Experiments and Analyses 9.5 Conclusion References 10 Time Series Classification Based on Complex Network 10.1 Introduction 10.2 Related Work 10.2.1 Time Series Classification 10.2.2 Mapping Methods 10.2.3 Graph Classification 10.3 Methods 10.3.1 Circular Limited Penetrable Visibility Graph 10.3.1.1 Circle System Equation 10.3.1.2 Graph Construction through CLPVG 10.3.1.3 Subgraph Network 10.3.2 Automatic Visibility Graph based on GNN 10.3.2.1 The Overall Framework 10.3.2.2 Feature Extraction 10.3.2.3 Feature Matrix of Graph 10.3.2.4 Classification of Graphs 10.3.3 Comparison with LPVG 10.4 Experiments 10.4.1 Datasets 10.4.2 The Experimental Settings 10.4.3 The Experimental Results 10.5 Conclusion References 11 Exploring the Controlled Experiment by Social Bots 11.1 Introduction 11.2 Definition of Social Bots 11.3 Application and Influence of Social Bots 11.3.1 Application 11.3.2 Influence 11.4 Development Technology of Social Bots 11.4.1 Internet Access Technology 11.4.1.1 PC Side 11.4.1.2 Browser-based Access 11.4.1.3 Mobile 11.4.2 Artificial Intelligence Foundation 11.4.3 Network Science Theory 11.5 Social Bots Detection 11.5.1 Graph-based Detection Method 11.5.2 Feature-based Detection Method 11.5.3 Crowdsourcing Detection Method 11.5.4 Mixed Use of Multiple Ways 11.6 Social Bots and Social Network Control Experiment 11.6.1 Online Social Network Controlled Experiment 11.6.2 Application of Social Bots in Controlled Experiment 11.6.3 Problems in Controlled Experiments by Social Bots 11.6.3.1 High Technical Threshold 11.6.3.2 Legal and Moral Issues 11.7 Conclusion References