دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Armin Hallmann (editor). Pabulo H. Rampelotto (editor)
سری:
ISBN (شابک) : 3030252329, 9783030252328
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 595
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Grand Challenges in Algae Biotechnology (Grand Challenges in Biology and Biotechnology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چالش های بزرگ در بیوتکنولوژی جلبک ها (چالش های بزرگ در زیست شناسی و بیوتکنولوژی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این کتاب، محققان و پزشکانی که در این زمینه کار
میکنند، وعدههای اصلی بیوتکنولوژی جلبک را ارائه میکنند و
چالشهای ناشی از کاربردها را به طور انتقادی مورد بحث قرار
میدهند. بر اساس این ارزیابی، نویسندگان پتانسیل بزرگ علمی،
صنعتی و اقتصادی را که توسط بیوتکنولوژی جلبک باز شده است، بررسی
میکنند. بخش اول کتاب، پیشرفتهای اخیر در فنآوریهای کلیدی را
ارائه میکند که نیروی محرکه برای آزاد کردن پتانسیل عظیم
بیوتکنولوژی جلبک هستند. بخش دوم کتاب بر این تمرکز دارد که چگونه
کاربردهای عملی بیوتکنولوژی جلبک ممکن است راهحلهای جدیدی را
برای برخی از چالشهای بزرگ قرن بیست و یکم ارائه دهد.
جلبکها پتانسیل زیادی برای حمایت از ساخت یک اقتصاد زیستمحور
ارائه میدهند و میتوانند کمک کنند. راه حل های جدید برای برخی
از چالش های بزرگ قرن بیست و یکم. علیرغم پیشرفت قابل توجه،
بیوتکنولوژی جلبک هنوز تا تحقق پتانسیل خود فاصله دارد. چگونگی
رها کردن این پتانسیل عظیم چالشی است که حوزه خود با آن مواجه
است. فنآوریهای جدید کشت و مهندسی فرآیندهای زیستی امکان
بهینهسازی استراتژی عملیاتی سیستمهای تولید در مقیاس صنعتی را
فراهم میکنند و هزینههای تولید را کاهش میدهند. به موازات این،
فناوریهای مولکولی جدید برای مهندسی ژنتیک و متابولیک (ریز)
جلبکها به سرعت توسعه مییابند. بهینهسازی مسیرهای بیوشیمیایی
موجود یا معرفی اجزای مسیر، تولید متابولیتهای خاص را با بازده
بالا ممکن میسازد. فنآوریهای جدید غربالگری از جمله فناوریهای
با توان بالا، آزمایش تعداد بسیار زیادی از نمونهها را ممکن
میسازد و بنابراین، امکان مدلسازی در مقیاس بزرگ فرآیندهای زیست
مولکولی را فراهم میکند، که در گذشته امکانپذیر نبود. علاوه بر
این، تولید سودآور می تواند نیاز به تصفیه زیستی یکپارچه داشته
باشد، که فرآیندهای متوالی و مواد اولیه مختلف را برای تولید سوخت
حمل و نقل، انرژی الکتریکی و مواد شیمیایی ارزشمند ترکیب می
کند.
In this book, researchers and practitioners working in
the field present the major promises of algae biotechnology and
they critically discuss the challenges arising from
applications. Based on this assessment, the authors explore the
great scientific, industrial and economic potential opened up
by algae biotechnology. The first part of the book presents
recent developments in key enabling technologies, which are the
driving force to unleash the enormous potential of algae
biotechnology. The second part of the book focuses on how
practical applications of algae biotechnology may provide new
solutions to some of the grand challenges of the 21st
century.
Algae offer great potential to support the building of a
bio-based economy and they can contribute new solutions to some
of the grand challenges of the 21st century. Despite
significant progress, algae biotechnology is yet far from
fulfilling its potential. How to unleash this enormous
potential is the challenge that the own field is facing. New
cultivation technologies and bioprocess engineering allow for
optimization of the operation strategy of state-of the art
industrial-scale production systems and they reduce the
production costs. Parallel to this, new molecular technologies
for genetic and metabolic engineering of (micro)algae develop
quickly. The optimization of existing biochemical pathways or
the introduction of pathway components makes high-yield
production of specific metabolites possible. Novel screening
technologies including high-throughput technologies enables
testing of extremely large numbers of samples and, thus, allow
for large scale modelling of biomolecular processes, which
would have not been possible in the past. Moreover, profitable
production can demand for integrated biorefining, which
combines consecutive processes and various feedstocks to
produce both transportation fuel, electric energy and valuable
chemicals.
Preface Contents Editors and Contributors Part I: Cultivation Systems Chapter 1: Commercial Microalgal Cultivation Systems 1.1 Introduction 1.1.1 Microalgae and Their Potential 1.1.2 Industrial Production of Microalgae 1.1.3 Function of a Photobioreactor 1.2 Photobioreactor Design 1.2.1 Growth Conditions 1.2.1.1 Nutrients 1.2.1.2 Gas Exchange 1.2.1.3 Temperature 1.2.1.4 Sunlight 1.2.1.5 Improving Commercial Microalgal Production 1.2.2 Materials 1.2.3 Cleaning and Sanitizing 1.3 Photobioreactor Management 1.3.1 A Simple Production Model 1.3.2 Harvest Strategies 1.3.3 Intrinsic Growth Rate, Initial Biomass and Respiration 1.3.3.1 Intrinsic Growth Rate 1.3.3.2 Initial Biomass 1.3.3.3 Respiration 1.4 New Developments in PBRs 1.5 Conclusions References Chapter 2: Operational, Prophylactic, and Interdictive Technologies for Algal Crop Protection 2.1 Introduction 2.2 Chemical and Biochemical Interventions 2.2.1 Copper 2.2.2 Bleach 2.2.3 Other Oxidants 2.2.4 Natural Compounds 2.2.5 Biocides 2.3 Physical Disruption or Removal 2.3.1 Hydrodynamic Shear 2.3.2 Hydrodynamic Cavitation 2.3.3 Ultrasonication 2.3.4 Pulsed Electric Fields 2.3.5 Foam Flotation 2.3.6 Hydrocyclone 2.3.7 Filtration 2.4 Nutritional Control 2.4.1 Phosphate 2.4.2 Nitrogen Source: Urea and Ammonia Versus Nitrate 2.4.3 Other Inorganic Salts 2.5 Cultivation System Operation Strategies 2.5.1 Cultivation Under Alkaline pH 2.5.2 Transient pH Shifts 2.5.3 CO2 Asphyxiation and Anoxia 2.6 Biological Control 2.6.1 Polyculture, Natural Assemblages, and Crop Rotation 2.6.2 Trophic Control 2.6.3 Allelopathy and Natural Defenses of Microalgae 2.7 Advanced Methods 2.7.1 Genetic Engineering Strategies 2.7.2 Industrial Microbial Ecology 2.8 Detection Methodologies 2.9 Conclusion References Chapter 3: Heterotrophic Growth of Microalgae 3.1 Eukaryotic Microalgae as Cell Factories for the Production of Valuable Biomolecules 3.1.1 Heterotrophic Production of Fatty Acids and Lipids 3.1.1.1 Examples of Total Lipid Production in Heterotrophy 3.1.1.2 Examples of ω-3 Polyunsaturated Fatty Acid Production in Heterotrophy 3.1.2 Pigments 3.1.2.1 Lutein 3.1.2.2 Astaxanthin 3.1.2.3 Phycocyanin 3.1.3 Antibacterial and Antifungal Activities in Heterotrophy 3.1.4 Bioactive Products of Cyanobacteria 3.2 Basal Carbon Metabolism of Microalgae Under Heterotrophy 3.2.1 Molecular Analysis of Heterotrophic Metabolism in Model Microalgal Species 3.2.1.1 Chlamydomonas reinhardtii 3.2.1.2 Euglena gracilis 3.2.1.3 Galdieria sulphuraria 3.2.1.4 Heterotrophic Metabolism of Microalgae Belonging to Other Phyla 3.3 Productivities of Heterotrophic Microalgal Cultures 3.4 Conclusions References Chapter 4: Agronomic Practices for Photoautotrophic Production of Algae Biomass 4.1 Introduction 4.1.1 Photoautotrophic Growth Systems 4.1.1.1 Photobioreactors 4.1.1.2 Open Ponds 4.1.1.3 Covered Ponds 4.2 Agronomic Practices for Algae Production 4.2.1 Balance of Manual Monitoring Versus Automation 4.2.2 Cultivation Management 4.2.2.1 Year-Round Cultivation Versus Seasonal Crop Rotation 4.2.3 Water Chemistry 4.2.3.1 Fertilizer Selection 4.2.3.2 Trace Elements 4.2.3.3 Other Components 4.2.3.4 Carbon Dioxide 4.2.4 Fertilizer Use Efficiency and Feeding Management 4.2.5 Harvest Management and Impacts 4.2.6 Crop Protection 4.2.6.1 Monitoring 4.2.6.2 Proactive Versus Reactive Treatments 4.2.6.3 Cultural Practices for Pest Prevention 4.2.6.4 Maintaining an Environment Versus Temporary Changes 4.2.6.5 Management over Changing Seasons 4.2.6.6 Identifying New Pests 4.2.6.7 Identifying and Responding to Potential Crop Failure 4.2.7 The Role of the Agronomist on an Algae Farm 4.3 Remaining Challenges 4.3.1 Infrastructure 4.3.2 Crop Protection Options 4.3.3 Other 4.4 Conclusions References Part II: Genetic and Metabolic Engineering Chapter 5: Advances in Genetic Engineering of Microalgae 5.1 Introduction 5.2 The Omics Groundwork for Genetic Engineering 5.2.1 Genomics 5.2.2 Epigenomics 5.2.3 Metagenomics 5.2.4 Transcriptomics 5.2.5 Proteomics 5.2.6 Lipidomics 5.2.7 Glycomics 5.2.8 Metabolomics 5.3 Key Elements of Genetic Engineering 5.3.1 Selectable Marker Genes 5.3.2 Reporter Genes 5.3.3 Regulatory Sequences 5.3.4 UTRs 5.3.5 Introns 5.3.6 Codon Usage 5.3.7 De Novo DNA Synthesis 5.3.8 Vector Construction 5.3.9 Transformation Methods 5.3.10 Selection 5.3.11 Genetically Transformable Microalgae Species 5.3.12 Gene Silencing, Gene Knockout, and Genome Editing 5.3.13 Unwanted Silencing of Transgenes 5.4 The Application of Genetic Engineering 5.4.1 Enzymes 5.4.2 Antibodies and Immunotoxins 5.4.3 Bioactive Peptides and Hormones 5.4.4 Insecticides 5.4.5 Vaccines 5.4.6 Food Additives and Cosmetic Ingredients 5.4.7 Optogenetic Tools for Neuroscience 5.4.8 Wastewater Treatment and Bioremediation 5.4.9 Liquid Biofuels and Hydrogen 5.5 Conclusions References Chapter 6: Optimization of Microalgae Photosynthetic Metabolism to Close the Gap with Potential Productivity 6.1 Introduction 6.2 The Untapped Potential of Microalgae 6.2.1 Microalgae as Feedstock for a Sustainable Global Economy 6.2.2 Microalgae Photosynthetic Metabolism 6.2.2.1 Light Reactions 6.2.2.2 Carbon Fixation 6.2.3 How Microalgae Photosynthetic Metabolism Responds to Intensive Cultivation 6.3 Genetic Engineering of Photosynthetic Metabolism 6.3.1 Improvement of Light Reactions 6.3.1.1 Engineering Light-Harvesting to Increase Light Homogeneity 6.3.1.2 Engineering Light-Harvesting to Increase Exploitable Radiation 6.3.1.3 Reprogramming Photo-Protection Mechanisms 6.3.2 Improvement of Carbon Fixation Rate 6.3.2.1 Engineering Rubisco and Substrates Availability 6.3.2.2 Engineering Photorespiration 6.3.2.3 Synthetic Pathways for Carbon Fixation 6.4 In Silico Approaches to Drive Genetic Engineering of Photosynthetic Metabolism 6.4.1 Photosynthesis Metabolic Engineering and Industrial Cultivation 6.4.2 Mathematical Models to Direct Metabolic Engineering of Photosynthesis 6.5 Conclusions References Chapter 7: Metabolic Engineering and Synthetic Biology Approaches to Enhancing Production of Long-Chain Polyunsaturated Fatty ... 7.1 Introduction 7.2 LC-PUFA in Nutrition and Health 7.3 Omega-3 Fatty Acid Production by Microalgae 7.3.1 LC-PUFA-Producing Microalgae in Aquaculture 7.3.2 LC-PUFA Biosynthesis 7.3.2.1 Aerobic Pathway 7.3.2.2 Anaerobic Pathway (PKS) 7.3.3 Intracellular Compartmentation and Partitioning of LC-PUFA in Microalgae 7.4 Recent Advances in the Metabolic Engineering of Microalgae to Enhance Production of LC-PUFA 7.4.1 Diatoms 7.4.1.1 Overexpressing Enzymes of Fatty Acid and TAG Biosynthetic Pathways 7.4.1.2 Blocking Competing Pathways 7.4.2 Nannochloropsis 7.4.3 Systems Biology Approaches in Studying Algal Lipid LC-PUFA Production 7.4.4 Alternative Approaches: Adaptive Laboratory Evolution and Chemical Genetics for LC-PUFA-Producing Strains Improvement 7.4.5 The Initial Risk Assessment of Genetically Modified Microalgae Cultivation for Large-Scale LC-PUFA Production 7.5 Perspectives and Conclusions References Part III: Integrated Approaches Chapter 8: Integrated Biorefineries for Algal Biomolecules 8.1 Introduction 8.2 The Challenge of Biomolecule Extraction from Algae 8.2.1 Unit Operations Dimension 8.2.2 Cell-Structure Dimension 8.3 Towards a Mechanistic Approach in Algae Biorefinery 8.3.1 Design the Right Cell Architecture 8.3.2 Cell Disintegration by Lytic Organisms, Enzymes and Selective Chemicals 8.3.3 Demulsification 8.3.4 Membraneless Osmosis 8.3.5 Ionic Liquid Recovery 8.3.6 Multi-product Biorefinery and Functionality 8.3.7 Process Integration 8.4 Future Directions: Biorefinery Intensification 8.4.1 Self-Disintegration 8.4.2 Simultaneous Disruption and Disentanglement 8.4.3 Self-Separating Systems 8.5 Techno-economic Analysis 8.6 Concluding Remarks References Chapter 9: Combining Microalgae-Based Wastewater Treatment with Biofuel and Bio-Based Production in the Frame of a Biorefinery 9.1 Introduction 9.1.1 Wastewater: Industries/Economic Sectors 9.1.2 Wastewater Treatment 9.1.3 Microalgae-Based Wastewater Treatment 9.1.4 Algal-Bacterial Consortia in Wastewater Treatment 9.1.5 Subcritical Water Extraction of Bioactive Compounds 9.1.6 Microalgae-Based Bioenergy 9.1.7 Microalgae-Based Biofertilizers 9.2 Wastewater Conversions Toward Biofuels and Bio-Based Products 9.2.1 Urban 9.2.2 Food 9.2.2.1 Dairy 9.2.2.2 Brewery 9.2.2.3 Potato 9.2.2.4 Coffee 9.2.2.5 Yeast 9.2.3 Livestock Production 9.2.3.1 Swine 9.2.3.2 Poultry 9.2.3.3 Cattle 9.2.4 Agriculture 9.2.5 Aquaculture 9.3 Environmental Benefits of Coupling Algae-Based Wastewater Treatment with Production of Biofuels and/or Bio-Products Throug... 9.4 Conclusions References Chapter 10: Microalgal Consortia: From Wastewater Treatment to Bioenergy Production 10.1 Introduction 10.2 Applications of Microalgae 10.2.1 CO2 Capture 10.2.2 Nutrients Removal from Wastewaters 10.2.3 Bioenergy Production 10.3 Interactions and Benefits of Using Microalgal Consortia 10.3.1 Microalgal Consortia 10.3.2 Microalgal-Bacterial Consortia 10.4 Applications of Microalgal Consortia 10.4.1 CO2 Capture 10.4.2 Nutrients Removal (Wastewater Polishing) 10.4.3 Bioenergy Production 10.5 Research Needs 10.6 Conclusions References Chapter 11: Downstream Green Processes for Recovery of Bioactives from Algae 11.1 Introduction 11.1.1 Marine Resources 11.2 Algae as Source of Bioactive or Valuable Compounds 11.2.1 Lipids 11.2.2 Proteins and Peptides 11.2.3 Polysaccharides 11.2.4 Phenolic Compounds 11.2.5 Alkaloids 11.2.6 Carotenoids 11.3 How to Improve the Production of Bioactive Metabolites 11.3.1 Marine Biotechnology 11.3.2 Optimization of Upstream and Downstream Processes 11.3.2.1 Upstream Processes 11.3.2.2 Downstream Processes 11.3.2.2.1 Assisted Extraction Techniques 11.3.2.2.2 Compressed Fluids´ Extraction Techniques 11.3.2.2.2.1 Supercritical Fluid Extraction 11.3.2.2.2.2 Gas-Expanded Liquid Extraction 11.3.2.2.2.3 Pressurized Liquid Extraction 11.3.3 Integrated Processes 11.3.4 Biorefinery 11.4 Conclusions References Part IV: Framework and Progress of Practical Applications Chapter 12: Bioactive Compounds from Microalgae and Their Potential Applications as Pharmaceuticals and Nutraceuticals 12.1 Introduction 12.2 Bioactivities of Microalgal Compounds and Their Potential Applications as Pharmaceuticals and Nutraceuticals 12.2.1 Antibacterial Activity 12.2.2 Antiviral Activity 12.2.3 Immunomodulatory Activity 12.2.4 Anticancer Activity 12.2.5 Beneficial Effects Against Metabolic Disorders and Other Diseases 12.2.6 Other Bioactivities 12.3 Mass Culture of Microalgae for the Production of Pharmaceuticals and Nutraceuticals 12.4 Future Directions of Research 12.5 Concluding Remarks References Chapter 13: Metal Pollution in Water: Toxicity, Tolerance and Use of Algae as a Potential Remediation Solution 13.1 Introduction 13.1.1 Metal Pollution in Aquatic Environments 13.1.2 Mechanisms of Metal Toxicity to Algae 13.1.3 Strategies Used by Algae to Cope with Metals in Their Environment 13.1.3.1 Cellular Defence Through Metal Uptake and Sequestration Mechanisms 13.1.3.2 Maintenance of Cellular Redox Balance Under Metal Stress 13.1.3.3 Heat Shock Protein Response to Metal Stress 13.1.3.4 Tolerance Acquired Through Physiological Acclimation and Genetic Adaptation to Metal Stress 13.2 Can Algae Be Used for Bioremediation of Metal Pollution? 13.2.1 Macroalgae 13.2.2 Microalgae 13.2.3 Bacterial-Periphyton Interactions in Biofilms 13.3 Conclusions and Suggestions for Further Work References Chapter 14: Benefits of Algal Extracts in Sustainable Agriculture 14.1 Introduction 14.2 Major Algal Metabolites 14.2.1 Phenols 14.2.2 Terpenoids 14.2.3 Free Fatty Acids 14.2.4 Polysaccharides 14.2.5 Carotenoids 14.3 Algal Metabolites as Biostimulants or Biofertilizers 14.3.1 Impact on Soil Aggregation and Porosity 14.3.2 Impact on Soil Macro- and Micro-environment 14.3.3 Genetically Modified Algae in Sustainable Agriculture 14.4 Algal Metabolites in Plant Protection and Development 14.4.1 Antimicrobial Activity 14.4.2 Antinematodal Activity 14.4.3 Bioinsecticidal Activity 14.5 Influence of Algal Metabolites in Animal Host Physiology 14.5.1 Macroalgal Impacts 14.5.2 Symbiosis Through Metabolite Transfer 14.5.3 Microalgal Impacts 14.6 Algal Phytohormones in Sustainable Agriculture 14.6.1 Auxins 14.6.2 Gibberellins 14.6.3 Cytokinins 14.6.4 Abscisic Acid 14.6.5 Ethylene 14.7 Summary and Future Perspectives References Chapter 15: Deriving Economic Value from Metabolites in Cyanobacteria 15.1 Introduction 15.2 Up and Downstream Processing of Cyanobacteria to Obtain Metabolites 15.2.1 Upstream Challenges and Techno-economics 15.2.2 Downstream Processing Challenges 15.2.2.1 Cell Concentration 15.2.2.2 Cell Disruption 15.2.2.3 Recovery and Purification of Metabolites 15.3 Metabolites 15.3.1 Phycobilins 15.3.2 Carotenoids 15.3.3 Polysaccharides 15.3.4 Proteins and Peptides 15.3.5 Nonribosomal Peptides 15.3.6 Lipids and Fatty Acids 15.3.7 Cyanotoxins 15.3.8 Sunscreens 15.3.9 Polyhydroxyalkanoates (PHAs) 15.3.10 Isoprenoids (Terpenes) 15.3.11 Platform Chemicals 15.3.12 Stable Isotopes 15.4 Systems Biology 15.5 Biorefinery Approaches 15.6 Conclusion References Chapter 16: European Union Legislation and Policies Relevant for Algae 16.1 Introduction 16.2 Policies 16.3 Harvest and Production 16.4 Food, Feed and Pharmaceuticals 16.5 Chemicals (Including Fertilisers and Cosmetics) 16.6 Energy and Trade 16.7 Conclusion: Challenges and Opportunities References