ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب GPU Computing Gems: Emerald Edition

دانلود کتاب GPU Computing Gems: Emerald Edition

GPU Computing Gems: Emerald Edition

مشخصات کتاب

GPU Computing Gems: Emerald Edition

دسته بندی: برنامه نويسي
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0123849888, 9780123849885 
ناشر: Elsevier 
سال نشر: 2011 
تعداد صفحات: 889 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 50,000



کلمات کلیدی مربوط به کتاب GPU Computing Gems: Emerald Edition: کتابخانه، ادبیات کامپیوتری، CUDA / OpenCL



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب GPU Computing Gems: Emerald Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب GPU Computing Gems: Emerald Edition نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب GPU Computing Gems: Emerald Edition

"... همراه عالی برای برنامه نویسی پردازنده های موازی عظیم توسط Hwu & Kirk." - نیکلاس پینتو، دانشمند پژوهشی در هاروارد و MIT، عضو NVIDIA 2009-2010 واحدهای پردازش گرافیکی (GPU) می توانند بسیار بیشتر از ارائه گرافیک انجام دهند. دانشمندان و محققان به طور فزاینده‌ای به پردازنده‌های گرافیکی برای بهبود کارایی و عملکرد آزمایش‌های محاسباتی فشرده در طیف وسیعی از رشته‌ها نگاه می‌کنند. GPU Computing Gems: Emerald Edition تکنیک‌های خود را برای شما به ارمغان می‌آورد و راه‌حل‌های مبتنی بر GPU را به نمایش می‌گذارد، از جمله: شبیه‌سازی سیاه‌چاله با محاسبات شتاب‌گرفته با GPU CUDA و نمایش تعاملی اوربیتال‌های مولکولی. برای بینایی کامپیوتر استریو در زمان واقعی بر روی GPGPU با استفاده از پاکسازی تصویر گرافیکی تطبیقی ​​ویندوز با وضوح چندگانه بازسازی تصویر توموگرافیک از خطوط نامرتب با پردازش تصویر CUDA Medical با استفاده از فیلترهای تصویر ITK با شتاب GPU 41 فصل دیگر از ایده های نوآورانه محاسبات GPU، نوشته شده برای قابل دسترس بودن به محققان از هر حوزه ای GPU Computing Gems: Emerald Edition اولین جلد از مجموعه برنامه های کاربردی Morgan Kaufmann از GPU Computing است که آخرین بینش ها و تحقیقات را در بینایی کامپیوتر، اتوماسیون طراحی الکترونیکی، برنامه های کاربردی مبتنی بر داده های نوظهور، علوم زیستی، تصویربرداری پزشکی ارائه می دهد. ردیابی و رندر اشعه، شبیه‌سازی علمی، پردازش سیگنال و صدا، مدل‌سازی آماری، و پردازش تصویر/فیلم. گستره صنعت از شبیه‌سازی علمی و اتوماسیون طراحی الکترونیکی گرفته تا پردازش صوتی/تصویری، تصویربرداری پزشکی، بینایی کامپیوتر و موارد دیگر را پوشش می‌دهد. معماری محاسبات موازی CUDA NVIDIA، محبوب‌ترین راه‌حل برنامه‌نویسی موازی انبوه، بینش و ایده‌ها و همچنین مهارت‌های عملی \"عملی\" را ارائه می‌دهد که می‌توانید فوراً از آنها استفاده کنید.


توضیحاتی درمورد کتاب به خارجی

"...the perfect companion to Programming Massively Parallel Processors by Hwu & Kirk." -Nicolas Pinto, Research Scientist at Harvard & MIT, NVIDIA Fellow 2009-2010 Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines. GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including: Black hole simulations with CUDA GPU-accelerated computation and interactive display of molecular orbitals Temporal data mining for neuroscience GPU -based parallelization for fast circuit optimization Fast graph cuts for computer vision Real-time stereo on GPGPU using progressive multi-resolution adaptive windows GPU image demosaicing Tomographic image reconstruction from unordered lines with CUDA Medical image processing using GPU -accelerated ITK image filters 41 more chapters of innovative GPU computing ideas, written to be accessible to researchers from any domain GPU Computing Gems: Emerald Edition is the first volume in Morgan Kaufmann's Applications of GPU Computing Series, offering the latest insights and research in computer vision, electronic design automation, emerging data-intensive applications, life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, and video / image processing.Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and moreMany examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solutionOffers insights and ideas as well as practical "hands-on" skills you can immediately put to use



فهرست مطالب

Front Cover......Page 1
GPU Computing Gems......Page 4
Copyright......Page 5
Table of Contents......Page 6
Editors, Reviewers, and Authors......Page 12
Introduction......Page 20
Section 1: Scientific Simulation......Page 22
1.1. Introduction, Problem Statement, and Context......Page 26
1.2. Core Method......Page 27
1.3. Algorithms, Implementations, and Evaluations......Page 29
1.4. Final Evaluation......Page 37
References......Page 39
2.1. Introduction, Problem Statement, and Context......Page 40
2.3. Gaussian Shape Overlay: Parallelization and Arithmetic Optimization......Page 43
2.4. LINGO: Algorithmic Transformation and Memory Optimization......Page 48
2.5. Final Evaluation......Page 51
Acknowledgments......Page 54
References......Page 55
3.1. Introduction......Page 56
3.2. Core Method......Page 57
3.3. Implementation......Page 58
3.4. Performance Improvement......Page 60
3.5. Future Work......Page 62
References......Page 63
4.1. Introduction, Problem Statement, and Context......Page 64
4.3. Algorithms, Implementations, and Evaluations......Page 66
4.4. Final Evaluation......Page 75
References......Page 79
5.1. Problem Statement......Page 80
5.2. Core Technology and Algorithm......Page 82
5.3. The Key Insight on the Implementation—the Choice of Building Blocks......Page 86
5.4. Final Evaluation and Benefits......Page 90
Acknowledgments......Page 93
References......Page 94
6.1. Introduction, Problem Statement, and Context......Page 96
6.2. Core Methods......Page 97
6.3. Algorithms and Implementations......Page 99
6.4. Evaluation and Validation of Results, Total Benefits, and Limitations......Page 109
References......Page 113
7.1. Background and Problem Statement......Page 114
7.2. Flux Calculation and Aggregation......Page 116
7.3. The GRASSY Platform......Page 118
7.4. Initial Testing......Page 121
Acknowledgments......Page 122
References......Page 123
8.1. Introduction......Page 124
8.2. The Post-Newtonian Approximation......Page 125
8.3. Numerical Algorithm......Page 126
8.4. GPU Implementation......Page 127
8.6. GPU Supercomputing Clusters......Page 128
8.8. Conclusion......Page 130
References......Page 131
9.1. Introduction......Page 134
9.2. Fast N-Body Simulation......Page 135
9.3. CUDA Implementation of the Fast N-Body Algorithms......Page 137
9.4. Improvements of Performance......Page 141
9.5. Detailed Description of the GPU Kernels......Page 143
9.6. Overview of Advanced Techniques......Page 150
References......Page 152
10.1. Introduction, Problem Statement, and Context......Page 154
10.2. Core Method......Page 156
10.3. Algorithms, Implementations, and Evaluations......Page 159
10.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 165
10.5. Conclusions and Future Directions......Page 168
References......Page 172
Section 2: Life Sciences......Page 174
11.1. Introduction, Problem Statement, and Context......Page 176
11.3. CUDA Implementation of the SW Algorithm for Identification of Homologous Proteins......Page 177
11.4. Discussion......Page 190
References......Page 191
12.1. Introduction, Problem Statement, and Context......Page 194
12.2. Core Methods......Page 195
12.3. Algorithms, Implementations, and Evaluations......Page 197
12.5. Future Directions......Page 204
References......Page 205
13.1. Introduction, Problem Statement, and Context......Page 206
13.2. Core Method......Page 207
13.3. Algorithms, Implementations, and Evaluations......Page 208
13.4. Final Evaluation......Page 214
Appendix......Page 217
References......Page 219
14.1. Problem Statement......Page 220
14.2. Core Method......Page 221
14.3. Algorithms, Implementations, and Evaluations......Page 222
14.4. Final Evaluation......Page 228
References......Page 230
15.1. Introduction......Page 232
15.2. Core Methodology......Page 233
15.3. GPU Parallelization: Algorithms and Implementations......Page 235
15.4. Experimental Results......Page 243
15.5. Discussion......Page 247
References......Page 248
Section 3: Statistical Modeling......Page 250
16.1. Introduction......Page 252
16.2. L'Ecuyer's Multiple Recursive Generator MRG32k3a......Page 253
16.3. Sobol Generator......Page 256
16.4. Mersenne Twister MT19937......Page 258
16.5. Performance Benchmarks......Page 263
Acknowledgments......Page 265
References......Page 266
17.1. Physics of Photon Transport......Page 268
17.2. Photon Transport on the GPU......Page 270
17.3. The Complete System......Page 277
17.4. Results and Evaluation......Page 279
17.5. Future Directions......Page 280
References......Page 282
18.1. Problem Statement and Mathematical Background......Page 284
18.3. Implementation......Page 287
18.4. Final Evaluation......Page 291
References......Page 293
Section 4: Emerging Data-Intensive Applications......Page 296
19.1. Introduction......Page 298
19.2. Core Technology......Page 299
19.3. GPU Algorithm and Implementation......Page 301
19.4. Improvements of Performance......Page 308
19.5. Conclusions and Future Work......Page 311
References......Page 312
20.1. Introduction, Problem Statement, and Context......Page 314
20.2. Core Method......Page 315
20.3. Algorithms, Implementations, and Evaluations......Page 317
20.4. Final Evaluation......Page 327
References......Page 331
21.1. Introduction, Problem Statement, and Context......Page 334
21.2. Final Evaluation and Validation of Results......Page 341
21.3. Conclusions, Benefits and Limitations, and Future Work......Page 344
References......Page 345
22.1. Introduction, Problem Statement, and Context......Page 346
22.2. Core Method......Page 347
22.3. Algorithms, Implementations, and Evaluations......Page 348
22.4. Final Evaluation......Page 358
22.5. Future Direction......Page 360
References......Page 361
Section 5: Electronic Design Automation......Page 362
23.1. Introduction......Page 364
23.2. Simulator Overview......Page 366
23.3. Compilation and Simulation......Page 368
23.4. Experimental Results......Page 376
23.5. Future Directions......Page 383
References......Page 384
24.1. Introduction, Problem Statement, and Context......Page 386
24.2. Core Method......Page 388
24.3. Algorithms, Implementations, and Evaluations......Page 390
24.4. Final Evaluation......Page 394
24.5. Future Direction......Page 397
References......Page 399
Section 6: Ray Tracing and Rendering......Page 400
25.1. Introduction, Problem Statement, and Context......Page 402
25.2. Core Methods......Page 403
25.3. Algorithms, Implementation, and Evaluation......Page 404
25.4. Final Evaluation......Page 414
25.6. Derivation of the Diffusion Equation......Page 416
References......Page 419
26.1. Introduction......Page 422
26.3. Random Walks in Path Tracing......Page 423
26.4. Implementation Details......Page 427
26.5. Results......Page 429
Acknowledgments......Page 432
References......Page 433
27.1. System Overview......Page 434
27.3. Core Technology and Algorithms......Page 435
27.4. Future Directions......Page 446
References......Page 447
28.1. Introduction, Problem Statement, and Context......Page 448
28.3. Algorithms, Implementations, and Evaluations......Page 449
28.4. Final Evaluation......Page 454
References......Page 456
Section 7: Computer Vision......Page 458
29.2. Core Method......Page 460
29.3. Algorithms, Implementations, and Evaluations......Page 461
29.4. Final evaluation and validation of results......Page 468
29.5. Multilabel Graph Cuts......Page 469
References......Page 471
30.1. Introduction......Page 472
30.2. Visual Saliency Model......Page 473
30.3. GPU Implementation......Page 475
30.4. Results......Page 487
References......Page 492
31.1. Introduction, Problem Statement, and Context......Page 494
31.2. Core Method......Page 496
References......Page 515
32.1. Introduction......Page 518
32.2. Methods......Page 520
32.3. Implementation......Page 526
32.4. Results and Discussion......Page 528
32.5. Conclusion and Future Work......Page 534
References......Page 535
33.2. Viola-Jones Object Detection Retrospective......Page 538
33.3. Object Detection Pipeline with NVIDIA CUDA......Page 547
33.4. Benchmarking and Implementation Details......Page 562
References......Page 564
Section 8: Video and Image Processing......Page 566
34.1. Introduction, Problem Statement, and Background......Page 568
34.2. Core Technology or Algorithm......Page 569
34.3. Key Insights from Implementation and Evaluation......Page 572
34.4. Final Evaluation......Page 586
References......Page 588
35.1. Introduction......Page 590
35.2. Core Algorithm......Page 591
35.3. CUDA Algorithm and Implementation......Page 593
35.4. Final Evaluation and Results......Page 598
References......Page 602
36.1. Introduction, Problem Statement, and Context......Page 604
36.3. Algorithms, Implementations, and Evaluations......Page 606
36.4. Final Evaluation......Page 618
References......Page 619
Section 9: Signal and Audio Processing......Page 620
37.1. Introduction, Problem Statement, and Context......Page 622
37.2. Core Methods......Page 624
37.3. Algorithms, Implementations, and Evaluations......Page 625
37.4. Conclusion and Future Directions......Page 636
References......Page 638
38.1. Introduction, Problem Statement, and Context......Page 640
38.2. Core Technology......Page 641
38.3. Algorithms, Implementations, and Evaluations......Page 643
38.4. Final Evaluation......Page 647
References......Page 648
39.1. Introduction......Page 650
39.2. Memory Hierarchy of GPU Clusters......Page 652
39.3. Large-Scale Fast Fourier Transform......Page 654
39.4. Algebraic Manipulation of Array Dimensions......Page 656
39.6. Conclusion and Future Work......Page 660
References......Page 663
Section 10: Medical Imaging......Page 664
40.1. Introduction......Page 668
40.2. Digital Breast Tomosynthesis......Page 670
40.3. Accelerating Iterative DBT using GPUs......Page 671
Acknowledgments......Page 677
References......Page 678
41.2. Core Methods......Page 680
41.3. Algorithms, Implementations, and Evaluations......Page 682
41.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 693
41.5. Related Work......Page 696
References......Page 697
42.1. Introduction......Page 700
42.2. Core Methods......Page 703
42.3. Implementation......Page 705
42.4. Evaluation and Validation of Results, Total Benefits, and Limitations......Page 707
42.5. Future Directions......Page 711
References......Page 712
43.1. Introduction, Problem Statement, and Context......Page 714
43.2. Core Method(s)......Page 715
43.3. Algorithms, Implementations, and Evaluations......Page 716
43.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 721
43.5. Future Directions......Page 727
References......Page 728
44.1. Introduction......Page 730
44.2. Core Method: Advanced Image Reconstruction Toolbox for MRI......Page 731
44.3. MRI Reconstruction Algorithms and Implementation on GPUs......Page 734
44.4. Final Results and Evaluation......Page 740
44.5. Conclusion and Future Directions......Page 741
References......Page 742
45.1. Introduction, Problem Statement, and Context......Page 744
45.2. Core Methods (High Level Description)......Page 747
45.3. Algorithms, Implementations, and Evaluations (Detailed Description)......Page 748
45.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 754
References......Page 756
46.2. Core Methods......Page 758
46.3. Implementation......Page 761
46.4. Results......Page 767
46.6. Acknowledgments......Page 769
References......Page 770
47.1. Introduction......Page 772
47.2. An Overview of B-Spline Registration......Page 773
47.3. Implementation Details......Page 777
47.4. Results......Page 788
References......Page 790
48.1. Introduction, Problem Statement, and Context......Page 792
48.2. Core Methods......Page 795
48.3. Algorithms, Implementations, and Evaluations......Page 796
48.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 807
48.5. Future Directions......Page 810
Acknowledgments......Page 811
References......Page 812
49.2. Core Methods......Page 814
49.3. Implementation......Page 818
49.4. Results......Page 830
49.5. Future Directions......Page 832
References......Page 833
50.1. Introduction, Problem Statement, and Context......Page 834
50.2. Core Methods......Page 835
50.3. Algorithms, Implementations, and Evaluations......Page 836
50.4. Final Evaluation and Validation of Results, Total Benefits, and Limitations......Page 843
50.5. Future Directions......Page 848
References......Page 849
Index......Page 852




نظرات کاربران