دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sandeep Madamanchi
سری:
ISBN (شابک) : 9781839218019
ناشر: Packt Publishing Pvt. Ltd.
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Google Cloud for DevOps Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Google Cloud برای مهندسان DevOps نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and credits Contributors Table of Contents Preface Section 1: Site Reliability Engineering – A Prescriptive Way to Implement DevOps Chapter 1: DevOps, SRE, and Google Cloud Services for CI/CD Understanding DevOps, its evolution, and life cycle Revisiting DevOps evolution DevOps life cycle Key pillars of DevOps SRE\'s evolution; technical and cultural practices The evolution of SRE Understanding SRE SRE\'s approach toward DevOps\' key pillars Introducing SRE\'s key concepts SRE\'s technical practices SRE\'s cultural practices Cloud-native approach to implementing DevOps using Google Cloud Focus on microservices Cloud-native development Continuous integration in GCP Continuous delivery/deployment in GCP Continuous monitoring/operations on GCP Bringing it all together – building blocks for a CI/CD pipeline in GCP Summary Points to remember Further reading Practice test Answers Chapter 2: SRE Technical Practices – Deep Dive Defining SLAs Key jargon Blueprint for a well-defined SLA SLIs drive SLOs, which inform SLAs Defining reliability expectations via SLOs SLOs drive business decisions Setting SLOs – the guidelines Exploring SLIs Categorizing user journeys SLI equation Sources to measure SLIs SLI best practices (Google-recommended) Understanding error budgets Error budget policy and the need for executive buy-in Making a service reliable Summarizing error budgets Eliminating toil through automation Illustrating the impact of SLAs, SLOs, and error budgets relative to SLI Scenario 1 – New service features introduced; features are reliable; SLO is met Scenario 2 – New features introduced; features are not reliable; SLO is not met Summary Points to remember Further reading Practice test Answers Chapter 3: Understanding Monitoring and Alerting to Target Reliability Understanding monitoring Monitoring as a feedback loop Monitoring misconceptions to avoid Monitoring sources Monitoring strategies Monitoring types The golden signals Alerting Alerting strategy – key attributes Alerting strategy – potential approaches Handling service with low traffic Steps to establish an SLO alerting policy Alerting system – desirable characteristics Time series Time series structure Time series cardinality Time series data – metric types Summary Points to remember Further reading Practice test Answers Chapter 4: Building SRE Teams and Applying Cultural Practices Building SRE teams Staffing SRE engineers (SREs) SRE team implementations – procedure and strategy SRE engagement model Incident management Incident life cycle Elements of effective incident management Being on call Paging versus non-paging events Single-site versus multi-site production teams Recommended practices while being on call Psychological safety Factors to overcome in order to foster psychological safety Sharing vision and knowledge and fostering collaboration Unified vision Communication and collaboration Summary Points to remember Further reading Practice test Answers Section 2: Google Cloud Services to Implement DevOps via CI/CD Chapter 5: Managing Source Code Using Cloud Source Repositories Technical requirements Introducing the key features Creating a repository via Google Cloud Console Creating a repository via the CLI Adding files to a repository in CSR One-way sync from GitHub/Bitbucket to CSR Common operations in CSR Browsing repositories Performing a universal code search Detecting security keys Assigning access controls Hands-on lab – integrating with Cloud Functions Adding code to an existing repository through the Cloud Shell Editor Pushing code from the Cloud Shell Editor (local repository) into CSR Creating a cloud function and deploying code from the repository in CSR Summary Further reading Practice test Answers Chapter 6: Building Code Using Cloud Build, and Pushing to Container Registry Technical requirements Key terminology (prerequisites) Understanding the need for automation Building and creating container images – Cloud Build Cloud Build essentials Building code using Cloud Build Storing and viewing build logs Managing access controls Cloud Build best practices – optimizing builds Managing build artifacts – Container Registry Container Registry – key concepts Hands-on lab – building, creating, pushing, and deploying a container to Cloud Run using Cloud Build triggers Creating an empty repository in Source Repositories Creating a Cloud Build trigger Adding code and pushing it to the master branch Code walk-through Viewing the results Summary Points to remember Further reading Practice test Answers Chapter 7: Understanding Kubernetes Essentials to Deploy Containerized Applications Technical requirements Kubernetes – a quick introduction Container orchestration Kubernetes features Kubernetes cluster anatomy Master components – Kubernetes control plane Node components Using kubectl Kubernetes objects Pod Deployment StatefulSets DaemonSets Service Scheduling and interacting with Pods Summarizing master plane interactions on Pod creation Critical factors to consider while scheduling Pods Kubernetes deployment strategies Recreate strategy Rolling update strategy Blue/Green strategy Canary deployment Summary Points to remember Further reading Practice test Answers Chapter 8: Understanding GKE Essentials to Deploy Containerized Applications Technical requirements Google Kubernetes Engine (GKE) – introduction Creating a GKE cluster GKE cluster – deploying and exposing an application GKE Console GKE – core features GKE node pools GKE cluster configuration AutoScaling in GKE Networking in GKE Storage options for GKE Cloud Operations for GKE GKE Autopilot – hands-on lab Summary Points to remember Further reading Practice test Answers Chapter 9: Securing the Cluster Using GKE Security Constructs Technical requirements Essential security patterns in Kubernetes Authentication Authorization Control plane security Pod security Hardening cluster security in GKE GKE private clusters Container-optimized OS Shielded GKE nodes Network Policies – restricting traffic among pods Workload Identity Points to remember Further reading Practice test Answers Chapter 10: Exploring GCP Cloud Operations Cloud Monitoring Workspaces Dashboards Metrics explorer Uptime checks Alerting Monitoring agent Cloud Monitoring access controls Cloud Logging Audit Logs Logs ingestion, routing, and exporting Summarizing log characteristics across log buckets Logs Explorer UI Logs-based metrics Network-based log types Logging agent Cloud Debugger Setting up Cloud Debugger Using Cloud Debugger Access control for Cloud Debugger Cloud Trace Trace Overview Trace List Analysis Reports Cloud Profiler Access control for Cloud Profiler Binding SRE and Cloud Operations SLO monitoring Hands-on lab – tracking service reliability using SLO monitoring Summary Points to remember Further reading Practice test Answers Appendix: Getting Ready for Professional Cloud DevOps Engineer Certification Cloud Deployment Manager Cloud Tasks Spinnaker Mock Exam 1 Test Duration: 2 hours Total Number of Questions: 50 Answers Mock Exam 2 Test Duration: 2 hours Total Number of Questions: 50 Answers Why subscribe? Other Books You May Enjoy Index