دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Charis M. Galanakis (editor)
سری:
ISBN (شابک) : 012816493X, 9780128164938
ناشر: Academic Pr
سال نشر: 2019
تعداد صفحات: 337
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Glucosinolates: Properties, Recovery, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گلوکوزینولات ها: خواص، بازیابی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گلوکوزینولات ها: خواص، بازیابی و کاربردها تمام جنبه های مهم گلوکوزینولات ها (خواص، مسائل پردازش و بازیابی، کاربردهای خاص) را پوشش می دهد. با شروع از متابولیسم، اثرات سلامتی و بیوسنتز گلوکوزینولات ها، این کتاب سپس به مسائل بازیابی، تجزیه و تحلیل و پردازش می پردازد تا کاربردهای بالقوه آنها را آشکار کند. این کتاب با ارائه آخرین پیشرفتها در این زمینه، رویکردها و کاربردهای عملی را نیز پوشش میدهد و بر تنوع آنها در گیاهان، بحث گلوکوزینولاتهای "خوب" و "بد"، مسیرهای بیوسنتزی و متابولیسم تاکید میکند. زنجیره تامین مواد غذایی در تجزیه و مصرف، منابع پایدار گلوکوزینولات ها، اثرات فرآوری و پخت و پز و موارد دیگر.
این کتاب که توسط تیمی از شیمیدانان، بیوشیمیدانان، دانشمندان علوم غذایی و فنآوران نوشته شده است، منبعی مفید برای هر کسی است که با علم، فناوری غذایی و پیشرفتهای محصول جدید در غذا، محصولات طبیعی و صنایع بهداشتی سروکار دارد.
Glucosinolates: Properties, Recovery and Applications covers all the important aspects of glucosinolates (properties, processing and recovery issues, particular applications). Starting from the metabolism, health effects and biosynthesis of glucosinolates, the book then deals with recovery, analysis and processing issues in order to reveal their potential applications. Bringing the latest advances in the field, the book also covers practical approaches and applications, giving emphasis to their diversity in plants, the debate of "good" and "bad" glucosinolates, biosynthetic pathways and metabolism, the influence of the food supply chain on decomposition and intake, sustainable sources of glucosinolates, processing and cooking effects, and more.
Written by a team of chemists, biochemists, food scientists and technologists, this book is a helpful resource for anyone dealing with food science, technology and new product developments in food, natural products and in health industries.
Cover List of author's published works Glucosinolates: Properties, Recovery, and Applications Copyright Contributors Preface 1 . The dilemma of ``good'' and ``bad'' glucosinolates and the potential to regulate their content 1.1 Introduction 1.2 Ecological role of glucosinolates 1.3 Potential antinutritional, undesired, and beneficial properties of GSLs and relative degradation products 1.4 Breeding to reduce antinutritional and undesired GSLs/ITCs 1.4.1 Glucosinolate analysis 1.4.2 Glucosinolate biosynthesis: an overview 1.4.3 Breeding Brassica crops for low glucosinolate content 1.5 Glucosinolate biofortification: breeding to selectively increase beneficial GSL/ITC 1.6 Preharvest factors influencing the concentration of GSL and the potential for agronomic biofortification 1.7 Postharvest and processing factor influencing the concentration of GSLs and their decomposition 1.8 Conclusions and future prospects References 2 . Biosynthesis and nutritious effects 2.1 Introduction 2.2 Biosynthesis of glucosinolates 2.2.1 General biosynthesis of GLs 2.2.1.1 The synthesis of GLs in plants 2.2.1.2 Side-chain modifications 2.2.2 Biosynthesis of indole glucosinolates 2.2.3 Biosynthesis of aliphatic glucosinolates 2.3 The effects of plant in vitro culture conditions on biosynthesis and levels of GLs 2.3.1 The effects of phytohormones 2.3.2 Effects of level of cell differentiation 2.3.3 The effects of elicitors 2.3.4 The effects of metabolic engineering strategies 2.4 Effects of nutrition and other factors on levels of glucosinolates in plants 2.4.1 The effects of potassium 2.4.2 The effects of sulfur 2.4.3 The effects of nitrogen 2.4.4 The effects of other factors 2.5 Conclusion Acknowledgments References 3 . Enzymatic activities behind degradation of glucosinolates 3.1 Introduction 3.2 Myrosinase structure and function 3.3 The glucosinolates-myrosinase defense system 3.4 Products of GL hydrolysis and mechanism of their formation 3.4.1 Nitriles and epithionitriles 3.4.2 Thiocyanates 3.4.3 Isothiocyanates 3.4.4 Indolic compounds 3.4.5 Oxazolidine-2-thiones 3.5 Methods of myrosinase activity determination 3.5.1 General remarks 3.5.2 Sample preparation 3.5.3 Monitoring of reactants during hydrolysis of GLs 3.6 Concluding remarks References 4 . Glucosinolates and metabolism 4.1 Myrosinase, a key enzyme in glucosinolates metabolism 4.2 Human metabolism of glucosinolates 4.3 Gut metabolism 4.3.1 Isothiocyanates 4.3.2 Nitriles 4.4 Hepatic metabolism 4.5 Future perspectives 4.6 Plant metabolism of glucosinolates 4.6.1 Sulfur metabolism 4.6.2 Metabolism 4.6.3 REDOX regulation of metabolism 4.6.4 Transport in glucosinolate metabolism 4.7 Conclusion References Further reading 5 . Different sources of glucosinolates and their derivatives 5.1 Introduction 5.2 General properties and structure of glucosinolates 5.3 Different sources of glucosinolates 5.4 Selected glucosinolate degradation products and their properties 5.4.1 Sulforaphane 5.4.2 Sinigrin and progoitrin 5.4.3 Phenethyl thiocyanate (gluconasturtiin) 5.5 Classes of glucosinolates 5.5.1 Aliphatic glucosinolates 5.5.2 Indole glucosinolates 5.5.3 Aromatic glucosinolates 5.6 Glucosinolates in selected plants 5.6.1 Rocket (Eruca sativa and Diplotaxis tenuifolia) 5.6.2 Mustard seed Brassica juncea L. (syn. Sinapis juncea L.) 5.6.3 Capers (Capparis sicula) 5.6.4 Nasturtium (Tropaeolum majus) 5.6.5 Rapeseed (Brassica napus L. and Brassica rapa L.) 5.6.6 Spider plant (Cleome or Gynandropsis spp.) 5.6.7 Turnip (Brassica rapa) 5.6.8 Moringa (Moringa oleifera Lam.) 5.6.9 Horseradish (Armoracia rusticana) 5.6.10 Upland cress (Barbarea varna) 5.6.11 Outside the order Brassicales 5.6.11.1 Papaya (Carica papaya) 5.7 New and/or alternative methods to increase the glucosinolates contents in plants 5.7.1 Increasing the desired glucosinolate component 5.7.2 Metabolism of different sources 5.7.3 Metabolic engineering approaches 5.7.4 Effect of gut microflora 5.7.5 Sustainable sources/by-products 5.8 Conclusions References 6 . Processing and cooking effects on glucosinolates and their derivatives 6.1 Introduction 6.2 Postharvest storage and packaging conditions 6.3 Industrial nonthermal technologies 6.4 Industrial thermal technologies 6.5 Culinary treatments 6.6 Processed food ingredients enriched in GLS 6.7 Conclusions References 7 . Analysis of glucosinolates content in food products 7.1 Introduction 7.2 Glucosinolates and isothiocyanates effect on human health 7.3 Analysis of glucosinolates in food 7.3.1 Glucosinolates stability during processing 7.3.2 Glucosinolates extraction methods 7.3.2.1 Conventional extraction methods 7.3.2.2 Emergent extraction methods High pressure-assisted extraction Pulsed electric field-assisted extraction Ultrasounds combined with microwave-assisted extraction Supercritical carbon dioxide-assisted extraction 7.3.3 Glucosinolates detection methods 7.3.4 Glucosinolates quantification methods 7.3.5 Isolation 7.3.6 Purity of analytical standards: water content by NMR 7.3.7 Extinction coefficients 7.3.8 Labeled internal standards 7.4 Conclusions Acknowledgments References 8 . Recovery techniques, stability, and applications of glucosinolates 8.1 Introduction 8.2 Recovery strategies 8.3 Conventional technologies 8.4 Nonthermal technologies 8.4.1 Ultrasound and microwave-assisted extraction 8.4.2 High pressure processing 8.4.3 Supercritical fluids and pressurized hot water extraction 8.4.4 Pulsed electric fields 8.5 Stability of GLs and ICs during preservation and storage 8.6 Applications of GLs and ICs 8.7 Commercialization aspects 8.8 GLs in animal nutrition 8.9 Conclusions References 9 . Sulforaphane and sulforaphene: two potential anticancer compounds from glucosinolates 9.1 Introduction 9.2 Discovery and existence of sulforaphane and sulforaphene 9.3 Analysis and recovery of sulforaphane and sulforaphene 9.4 Procedures and analysis data 9.5 Purification 9.5.1 Macroporous resin 9.5.2 Preparative high-performance liquid chromatography 9.5.3 High-speed countercurrent chromatography 9.6 Anticarcinogenic activity of sulforaphane and sulforaphene 9.6.1 In vitro inhibition of cancer cells 9.6.2 The anticarcinogenic mechanism of sulforaphane and sulforaphene 9.6.3 Acute toxicity testing in mice 9.6.4 Pharmacokinetics in mice 9.6.5 In vivo anticancer effects of sulforaphene 9.7 Conclusions References Index A B C D E F G H I J K L M N O P R S T U V W X Y Z Back Cover