ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Global Agricultural Production: Resilience to Climate Change

دانلود کتاب تولید جهانی کشاورزی: ​​انعطاف پذیری در برابر تغییرات آب و هوایی

Global Agricultural Production: Resilience to Climate Change

مشخصات کتاب

Global Agricultural Production: Resilience to Climate Change

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3031149726, 9783031149726 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 627
[628] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 33,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Global Agricultural Production: Resilience to Climate Change به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تولید جهانی کشاورزی: ​​انعطاف پذیری در برابر تغییرات آب و هوایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تولید جهانی کشاورزی: ​​انعطاف پذیری در برابر تغییرات آب و هوایی



این کتاب تمام جنبه های مربوط به تغییرات آب و هوا و کشاورزی را پوشش می دهد. این کتاب در مورد مدل‌های جهانی آب و هوا (GCM)، پروژه مقایسه‌ای مدل جفت شده (CMIP) و کاربرد ابزار مدیریت استراتژیک که شامل RCP (مسیر تمرکز نماینده)، SSP (مسیرهای اجتماعی-اقتصادی مشترک) و SPA (فرض‌های سیاست آب و هوایی مشترک) است، بحث می‌کند.

این کتاب اطلاعاتی در مورد چگونگی ارتباط تغییرات آب و هوا، بهره وری کشاورزی و امنیت غذایی ارائه می دهد. اثرات تغییر آب و هوا بر امنیت غذایی از طریق محرک های آب و هوایی مختلف به عنوان مثال، ENSO (ال نینو-نوسان جنوبی) و SOI (شاخص نوسانات جنوبی) مورد مطالعه قرار می گیرد. این محرک‌ها مسئول رویدادهای شدید آب و هوایی هستند، بنابراین پیش‌بینی زودهنگام این محرک‌ها می‌تواند به طراحی اقدامات تطبیقی ​​مناسب برای بخش کشاورزی کمک کند و می‌تواند به عنوان ابزار هشدار اولیه برای مدیریت ریسک در نظر گرفته شود.

به طور مشابه، تغییرات آب و هوا و مدل سازی خاک مبتنی بر فرآیند و همچنین نقش میکروب های خاک و کشاورزی هوشمند آب و هوا در این کتاب مورد بحث قرار گرفته است.

تأثیر تغییر اقلیم بر تولید محصول حبوبات و استراتژی‌های سازگاری با جزئیات در مورد مدل‌سازی محصول غلات، دیدگاه‌های  ارائه شده است. Camelina sativa و همچنین سوخت زیستی کم ورودی و محصولات دانه‌های روغنی، انتشار گازهای گلخانه‌ای (GHGs) و استراتژی‌های کاهش.



توضیحاتی درمورد کتاب به خارجی

This book covers all aspects related to climate change and agriculture. The book discusses Global Climate Models (GCMs), Coupled Model Intercomparison Project (CMIP) and application of strategic management tool that includes RCP (Representative concentration Pathway), SSP (Shared Socio-economic Pathways) and SPA (Shared climate Policy Assumptions).

The book provides information on how climate change, agricultural productivity and food security are interlinked. The impacts of climate change on food security are studied through different climatic drivers e.g., ENSO (El Niño–Southern Oscillation) and SOI (Southern Oscillation Index). These drivers are responsible for the climatic extreme events hence early prediction of these drivers could help to design appropriate adaptive measures for the agriculture sector and could be considered as early warning tools for risk management.

Similarly, climate change and process-based soil modeling as well as the role of soil microbes and climate smart agriculture are discussed in this book.

Climate change impacts on legume crop production and adaptation strategies are presented, with details about cereal crop modeling, perspectives of Camelina sativa as well as low input biofuel and oilseed crop, greenhouse gases (GHGs) emissions and mitigation strategies.




فهرست مطالب

Contents
Chapter 1: Climate Change: An Overview
	1.1 What Is Climate Change?
	1.2 Climate Change and Coupled Model Intercomparison Project (CMIP)
		1.2.1 Application of CMIP
	1.3 Radiative Forcing (RF) and Climate Change
	1.4 Drivers of Climate Change
		1.4.1 Anthropogenic Drivers
			1.4.1.1 Greenhouse Gases
			1.4.1.2 Water Vapours
			1.4.1.3 Ozone
			1.4.1.4 Aerosols
			1.4.1.5 Land Use Change (LUC)
			1.4.1.6 Contrails
		1.4.2 Natural Drivers
			1.4.2.1 Solar Irradiance
			1.4.2.2 Volcanoes
	1.5 Scenario Analysis (RCP, SSP and SPA)
	1.6 Indicators of Climate Change
	1.7 Humidity as a Driver of Climate Change
	1.8 Solar Dimming
	1.9 Conclusion
	References
Chapter 2: Climate Change, Agricultural Productivity, and Food Security
	2.1 Introduction
	2.2 Agricultural Productivity
	2.3 Food Security
		2.3.1 Sustainable Agriculture and Food Security
		2.3.2 Global Food Security
		2.3.3 Food Security in Pakistan
	2.4 Climate Change and Food Security: Impacts
		2.4.1 Climate Factors Affecting Food Security
		2.4.2 Climate Change Extreme Events
		2.4.3 Understanding Climate Change Extreme Events to Ensure Food Security
		2.4.4 Climate Change and Rainfed Wheat Production: Simulation Study
		2.4.5 Changing Planting Window: Adaptation Option for Enhancing Food Security
	2.5 Potential Options to Manage Food Security and Climate Change
	2.6 Conclusion
	References
Chapter 3: Climate Change and Process-Based Soil Modeling
	3.1 Soils and Climate Change
	3.2 Understanding Soil
	3.3 Soil Modules in Different Models
		3.3.1 AquaCrop
		3.3.2 Agricultural Production Systems sIMulator (APSIM)_Soil Module
		3.3.3 Decision Support System for Agrotechnology Transfer (DSSAT)_Soil Module
		3.3.4 CropSyst_Soil
			3.3.4.1 CropSyst Carbon/Nitrogen Model
		3.3.5 STTCS (Simulateur mulTIdisciplinaire Pour les Cultures Standard)
		3.3.6 Erosion Productivity Impact Calculator (EPIC)
		3.3.7 WOrld FOod Studies Crop Simulation Model (WOFOST)
		3.3.8 DNDC (DeNitrification DeComposition)
	3.4 Monitoring Soil Through Remote Sensing
	3.5 Models Applications
	3.6 Conclusion
	References
Chapter 4: Soil Microbes and Climate-Smart Agriculture
	4.1 Introduction
	4.2 Soil Microbes and Sustainable Agriculture
	4.3 Soil Microbes and Carbon Sequestration
	4.4 Agricultural Practices and Carbon Sequestration
	4.5 Climate Change and Soil Health Indicators
	4.6 Soil Microbe Mitigating Climate Variability
	4.7 Climate-Smart Agriculture
	4.8 Soil Microbes and Global Agriculture
	4.9 Microbial Contribution in Climate-Smart Agriculture
	References
Chapter 5: Climate Change Impacts on Legume Crop Production and Adaptation Strategies
	5.1 Introduction
	5.2 Nutritional Benefits of Legumes
	5.3 Area, Production and Yield of Grain Legumes
	5.4 Legumes and Ecosystem Services
	5.5 Pulses: The Dry Edible Legumes
	5.6 Pulse Benefits to Climate
	5.7 Pulses as Food Security Boosters
	5.8 Impact of Climate Change on Pulse Production
	5.9 Institutes Working on Pulse Improvement
	5.10 Quantification of Climate Variability Impacts on Legume Crops
		5.10.1 Impact of Elevated CO2 Concentration eCO2 on Legume Crops
		5.10.2 Impact of High Temperature on Legume Crops
		5.10.3 Impact of Water Stress on Legume Crops
	5.11 Modelling and Simulation
	5.12 Adaptation Options for Legumes to Climate Variability
	5.13 Conclusion
	References
Chapter 6: Cereal Crop Modeling for Food and Nutrition Security
	6.1 Introduction
	6.2 Global Challenges and Solutions to Ensure Food Security
	6.3 Food Security and Nutrition
	6.4 Keeping Away from Diversity Loss and Changing Land Use
	6.5 Adaptation and Mitigation to Climate Change
	6.6 The Role of Cereal Crop Models
	6.7 Principle Disciplines and Integrating Innovations
	6.8 Conclusion
	References
Chapter 7: Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop
	7.1 Introduction
	7.2 Oilseed and Biofuel Crops Under Changing Climate
	7.3 History
		7.3.1 Native Range
		7.3.2 Range
	7.4 Classification
		7.4.1 Taxonomy and Genetics
	7.5 Plant Growth
		7.5.1 Morphology
		7.5.2 Phenology
		7.5.3 Growth of Camelina: Overall Depiction
		7.5.4 BBCH Scale for C. sativa
	7.6 Reproduction
		7.6.1 Floral Biology
	7.7 Seed Production and Dispersal
		7.7.1 Planting Time
		7.7.2 Seed Rate
		7.7.3 Seed Banks, Viability, and Germination
	7.8 Camelina: Agronomy, Prospects, and Challenges
		7.8.1 Sowing Date
		7.8.2 Tillage
		7.8.3 Seed Rate
		7.8.4 Herbicide Control
		7.8.5 Fertilizer Applications
		7.8.6 Harvesting
		7.8.7 Seed Yield
	7.9 Potential of C. sativa Over Nonirrigated Areas Compared to Other Oilseeds
	7.10 Constraints
	7.11 Camelina Agronomic Performance, Oil Quality, Properties, and Potential
	7.12 Camelina Response to Insects, Disease, Herbivory, and Higher Plant Parasites
		7.12.1 Insects
	7.13 Diseases
		7.13.1 Fungal Diseases
		7.13.2 Viral Diseases
		7.13.3 Bacterial Diseases
		7.13.4 Phytoplasmas
		7.13.5 Invertebrates
	7.14 Nutritional Values of Camelina Seed
	7.15 Agro-industrial Uses
	7.16 Camelina and Animal Feed
	7.17 Biofuel
	7.18 Alternative Uses
	7.19 Camelina in the Fallow Season
	7.20 Prospects for Future Research
		7.20.1 Agronomic Research
		7.20.2 Plant Breeding Efforts
	7.21 Climate Change
	7.22 Role of Camelina to Mitigate Climate Change Issues
	7.23 Conclusion and Suggestions
	References
Chapter 8: Greenhouse Gas Emissions and Mitigation Strategies in Rice Production Systems
	8.1 Introduction
	8.2 Rice Ecosystems
	8.3 Paddy Soil Characteristics
	8.4 Methane (CH4) Production and Emissions from Paddy Soils
		8.4.1 Methanogenesis and Methanogens
			8.4.1.1 Hydrolysis
			8.4.1.2 Acidogenesis
			8.4.1.3 Acetogenesis
			8.4.1.4 Methanogenesis
		8.4.2 Methane Emission Pathways
			8.4.2.1 Diffusion
			8.4.2.2 Ebullition
			8.4.2.3 Plant-Mediated Transport
		8.4.3 Methane Oxidation
			8.4.3.1 Aerobic Methane Oxidation
			8.4.3.2 Anaerobic Methane Oxidation
		8.4.4 Factors Affecting Methane Production from Paddy Soils
	8.5 Nitrous Oxide (N2O) Production and Emission from Rice Fields
		8.5.1 Nitrogen Transformation in Flooded Soils (Volatilization, Leaching)
		8.5.2 Processes Enabling Nitrous Oxide Emission from Rice Fields
			8.5.2.1 Nitrification
			8.5.2.2 Denitrification
	8.6 Factors Influencing N2O Emission from Rice Fields
	8.7 Strategies to Mitigate CH4 and N2O Emissions from Rice Fields
		8.7.1 Water Management
		8.7.2 Rice Varietal Selection
		8.7.3 Planting Methods
		8.7.4 Fertilizer Management
		8.7.5 Nitrification Inhibitors and Slow-Release Fertilizers
		8.7.6 Tillage Practices
	8.8 Conclusion
	References
Chapter 9: Fiber Crops in Changing Climate
	9.1 Global Fiber Production
	9.2 Fiber Crops Contribution in Climate Change
	9.3 Impact of Climate Change on Fiber Crop Production
		9.3.1 Cotton
		9.3.2 Jute
		9.3.3 Hemp
		9.3.4 Flax
	9.4 Impact of Climate Change on Fiber Quality
	9.5 Fiber Crop Production Opportunities in Climate Change Scenarios
	9.6 Climate Change Impacts on Pests
		9.6.1 Cotton Bollworm
		9.6.2 Natural Enemies
		9.6.3 Fall Armyworm
		9.6.4 Cotton Mealybug
		9.6.5 Minor Pests
	9.7 Fiber Crop Diseases
	9.8 Future Recommendations and Conclusion
	References
Chapter 10: Estimation of Crop Genetic Coefficients to Simulate Growth and Yield Under Changing Climate
	10.1 Introduction
	10.2 Crop Simulation Models and Genetic Coefficients
	10.3 Common Methods of Estimating Genetic Coefficients
		10.3.1 Field Experimentation
		10.3.2 Trial and Error (TE)
		10.3.3 GENotype Coefficient Calculator (GENCALC)
		10.3.4 Downhill Simplex Method
		10.3.5 Simulated Annealing Method
		10.3.6 Generalized Likelihood Uncertainty Estimation (GLUE)
		10.3.7 Parameter ESTimation (PEST)
		10.3.8 Evolutionary Algorithm: Multi-objective Evolutionary Algorithm
		10.3.9 Noisy Monte Carlo Genetic Algorithm (NMCGA)
		10.3.10 Markov Chain Monte Carlo (MCMC)
	10.4 Other New Promising Parameter Estimation Methods
		10.4.1 Differential Evolution (DE) Algorithm
		10.4.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
		10.4.3 Particle Swarm Optimization (PSO)
		10.4.4 Artificial Bee Colony (ABC)
		10.4.5 Ensembling Approach
	10.5 Statistical Evaluation of Performance of Genetic Coefficients
	10.6 Conclusions
	References
Chapter 11: Climate Change Impacts on Animal Production
	11.1 Introduction
		11.1.1 Global and Country Scenario of Climate Change
		11.1.2 Animal Production Under Climate Variability
		11.1.3 Demand for Animal Products
			11.1.3.1 Population Growth
			11.1.3.2 Growth in per Capita Income
			11.1.3.3 Urbanization
		11.1.4 Institutes Working on Animal Production Under Changing Climate
			11.1.4.1 Livestock Census
	11.2 Quantification of Climate Change
		11.2.1 Overview of Responses to Temperature, Drought, and Carbon Dioxide
			11.2.1.1 Temperature
			11.2.1.2 Drought
			11.2.1.3 Carbon Dioxide
		11.2.2 Overview of Responses to Biotic Stress Such as Parasites
	11.3 Impact of Climate Change on Livestock Production Systems
		11.3.1 Quality of Feed
		11.3.2 Health of Animals
		11.3.3 Reproduction in Animals
		11.3.4 Diseases in Animals
	11.4 Impact of Climate Change on Animal Productivity
		11.4.1 Milk Production
		11.4.2 Wool Production
		11.4.3 Poultry Production
		11.4.4 Meat Production
	11.5 Climate Change and Mortality
	11.6 Modeling and Simulation
	11.7 Adaptation Options
	11.8 Conclusion
	References
Chapter 12: Climate Change and Global Insect Dynamics
	12.1 Introduction
	12.2 Insect Production Under Climatic Variability
	12.3 Institutes Working on Insect Production Under Changing Climate
	12.4 Quantification of Climate Change
		12.4.1 High Temperature
		12.4.2 Carbon Dioxide
		12.4.3 Drought
		12.4.4 Biotic Stress
	12.5 Modeling and Simulation
	12.6 Adaptation Options
	12.7 Conclusion
	References
Chapter 13: Sustainable Solutions to Food Insecurity in Nigeria: Perspectives on Irrigation, Crop-Water Productivity, and Ante...
	13.1 Introduction
		13.1.1 Conceptual Framework for Effective Irrigation System
	13.2 Methodology
	13.3 Food Insecurity and Poverty in Nigeria
		13.3.1 Irrigation, Poverty, and Food Insecurity Nexus
		13.3.2 Irrigation Development as the Cornerstone of Food Security in Nigeria
		13.3.3 Irrigation Potential in Nigeria
		13.3.4 Role of Irrigation in Agricultural Production, Poverty Alleviation, Food Security, and Economy
	13.4 Priorities for Sustainable Irrigation
	13.5 Conclusion
	References
Chapter 14: Functions of Soil Microbes Under Stress Environment
	14.1 Introduction
		14.1.1 Effect of Different Stress Environments on Microbes and Functions of Microbes in Mitigating That Stress
		14.1.2 Functions of Microbes in Mitigating Stress for Plants
		14.1.3 Functions of Microbes Under Nutrient Deficiency Stress
			14.1.3.1 Bacteria
				High Concentration of Na+ and Functioning of PGPR in Minimizing Its Negative Impact
				Water-Deficit Stress Condition and Functioning of PGPR in Minimizing Its Negative Impact
				Functions of PGPR in Minimizing Stress Caused by Pathogens
			14.1.3.2 Arbuscular Mycorrhizal Fungi
				Functions of Arbuscular Mycorrhizal Fungi in Different Stress Environments
	14.2 Techniques to Study Microbial Functions
	14.3 Conclusion
	References
Chapter 15: Modeling Impacts of Climate Change and Adaptation Strategies for Cereal Crops in Ethiopia
	15.1 Introduction
	15.2 Methods
		15.2.1 Study Sites, Data Sources, and Scenarios
		15.2.2 Maize
		15.2.3 Wheat
		15.2.4 Barley
		15.2.5 Sorghum
		15.2.6 Teff
	15.3 Results and Discussion
		15.3.1 Maize
		15.3.2 Wheat
		15.3.3 Barley
		15.3.4 Sorghum
		15.3.5 Teff
	15.4 Conclusions
	References
Chapter 16: Strategies for Mitigating Greenhouse Gas Emissions from Agricultural Ecosystems
	16.1 Introduction
	16.2 Mitigation Opportunities: Increased Sinks and Reduced Emissions
		16.2.1 Increasing Carbon Sequestration
			16.2.1.1 Tillage Methods and Residue Management
			16.2.1.2 Crop Selection and Rotation
		16.2.2 Reducing Nitrous Oxide Emissions
			16.2.2.1 4R of Fertilizer Management
			16.2.2.2 Grazing and Manure Management
		16.2.3 Reducing Methane Emissions
			16.2.3.1 Improving Rumen Fermentation Efficiency and Productivity of Animals
			16.2.3.2 Manure Management
			16.2.3.3 Reducing CH4 Emissions from Flooded Rice Cultivation
		16.2.4 Quantifying and Modeling GHG Fluxes
	16.3 Conclusions
	References
Chapter 17: Environmental and Economic Benefits of Sustainable Sugarcane Initiative and Production Constraints in Pakistan: A ...
	17.1 Introduction
	17.2 Sugarcane as an Energy Source
	17.3 Overview of Sugarcane Production in Pakistan
	17.4 The Current System of Sugarcane Production in Pakistan
		17.4.1 Climate
		17.4.2 Climate Change and Sugarcane Response
		17.4.3 Preparation of Land
		17.4.4 Time of Planting and Seed Rates
		17.4.5 Methods of Planting
		17.4.6 Fertilizers
		17.4.7 Irrigation
		17.4.8 Harvesting and Transportation
	17.5 Sugarcane Crop: The Highest Consumer of Water
	17.6 Sustainable Sugarcane Initiative (SSI)
		17.6.1 Nursery Planting
		17.6.2 Transplanting
		17.6.3 Wider Spacing
		17.6.4 Water-Efficient Utilization
		17.6.5 An Organic Method of Cultivation
		17.6.6 Intercropping with Other Crops
		17.6.7 Overall Benefits of the SSI Method
	17.7 Model Application of Sugarcane Crop
	17.8 SSI Method of Cultivation
		17.8.1 Selection of Bud
		17.8.2 Treatment of Buds
		17.8.3 Nursery
		17.8.4 Preparation of the Main Field
		17.8.5 Removal of Residues
		17.8.6 Tillage
		17.8.7 Application of Organic Fertilizers
		17.8.8 Construction of Furrows, Ridges, and Transplanting
		17.8.9 Reduction in Weed Loss and Mulching
		17.8.10 Fertilizer Application Doses
		17.8.11 Water Management
		17.8.12 Earthing Up, De-trashing, and Propping
		17.8.13 Protection of Plant
		17.8.14 Intercropping and Harvesting
	17.9 Benefits of the SSI Method
	17.10 Conclusions
	References
Chapter 18: Modeling Photoperiod Response of Canola Under Changing Climate Conditions
	18.1 Introduction
	18.2 Role of Models in Canola Production
	18.3 Materials and Methods
		18.3.1 Study Locations
		18.3.2 Climatic Conditions During the Canola Growing Seasons
		18.3.3 Experimental Design and Management Practices
		18.3.4 Crop Measurements
		18.3.5 Soil Measurements
		18.3.6 Modeling Flowering Phase
			18.3.6.1 Temperature Function
				Segmented Function (S)
			18.3.6.2 Photoperiod Function
				Negative Exponential Function
		18.3.7 Model Description
		18.3.8 Model Calibration
			18.3.8.1 Upscaling Strategies for Cultivar Parameters in Regional Simulation of Canola Growth
			18.3.8.2 Strategy 1: Single-Site Parameter
			18.3.8.3 Strategy 2: Virtual Cultivar Parameters Generated from Posterior Parameter Distributions
		18.3.9 Model Performance Evaluation
		18.3.10 Statistical Analysis
	18.4 Results and Discussion
		18.4.1 Climatic Parameters
			18.4.1.1 Metrological Characteristics of NARC-Islamabad
			18.4.1.2 Metrological Characteristics of URF-Koont
		18.4.2 Agronomic Parameters
			18.4.2.1 Days to Emergence
			18.4.2.2 Days to Anthesis
			18.4.2.3 Days to End of Flowering
			18.4.2.4 Days to Maturity
			18.4.2.5 Leaf Area Index
			18.4.2.6 Biological Yield
			18.4.2.7 Grain Yield
			18.4.2.8 Harvest Index
		18.4.3 Simulation Outcomes
			18.4.3.1 Phenology
			18.4.3.2 Leaf Area Index, Biomass and Grain Yield
	18.5 Conclusions
	References
Chapter 19: Modelling and Field-Based Evaluation of Vernalisation Requirement of Canola for Higher Yield Potential
	19.1 Introduction
	19.2 Crop Modelling and Canola Production Under Changing Climate
	19.3 Materials and Methods
		19.3.1 Phenological Modelling
		19.3.2 Model Description
		19.3.3 Model Calibration
			19.3.3.1 Genetic Parameter Estimations with the DSSAT-GLUE Package
			19.3.3.2 Upscaling Strategies for Cultivar Parameters in Regional Simulation of Canola Growth
			19.3.3.3 Strategy 1: Single-Site Parameters (SSPs)
			19.3.3.4 Strategy 2: Virtual Cultivar Parameters (VCPs) Generated from the Posterior Parameter Distributions
		19.3.4 Model Performance Evaluation
		19.3.5 Statistical Analysis
	19.4 Results and Discussion
		19.4.1 Climatic Specifications
		19.4.2 Agronomic Parameters
			19.4.2.1 Phenology
			19.4.2.2 Biological and Grain Yield
			19.4.2.3 Harvest Index
		19.4.3 Phenology Modelling
		19.4.4 Simulation Outcomes
			19.4.4.1 Phenology
			19.4.4.2 Leaf Area Index
			19.4.4.3 Biological Yield
			19.4.4.4 Grain Yield
			19.4.4.5 Harvest Index
	19.5 Conclusion
	References
Chapter 20: Integrated Crop-Livestock System Case Study: Prospectus for Jordan´s Climate Change Adaptation
	20.1 Introduction
	20.2 Description and Characterization of Study Site
		20.2.1 Animal Products
		20.2.2 Types of Animal Farms
		20.2.3 Forage Production: Demand and Supply
		20.2.4 Plans Undertaken at a National Level
		20.2.5 Climatic Change Impact
		20.2.6 Site Description
		20.2.7 Species Adaptation and Production Potential
		20.2.8 Farmers´ Preference
		20.2.9 Adaptation Strategies
	20.3 Integration of the Farming Community in Seed-Production Technologies
		20.3.1 Growth, Advancement and Dissemination of Seed-Production Facilities and Genotype Adoption
		20.3.2 Seed Store
		20.3.3 Machines
	20.4 Landscape Scale Analysis of Crop Diversification and Effects on the Climate Change Scenario in the Crop-Livestock Farming...
		20.4.1 Farmers´ Field School
	20.5 Developing Seed Production Technology Packages: Guidelines and Application at the NARS and Farmers´ Level (Cultural Pract...
		20.5.1 Grain Purity Maintenance
		20.5.2 Role of NARS´s Formal Seed System, and Extension, and Dissemination of Conventional and Nonconventional Crops: Continua...
		20.5.3 Integrated Crop Management Packages to Improve Livestock Production
		20.5.4 Socioeconomic Impact of Improved Production Systems on Farmers´ Livelihoods in Marginal Environments
		20.5.5 Improving Knowledge and Skills of Farmers and Agricultural Extension Staff in Marginal Environments
	20.6 Summary
	References
Chapter 21: Effect of Salinity Intrusion on Sediments in Paddy Fields and Farmers´ Adaptation Initiative: A Case Study
	21.1 Introduction
	21.2 Effect of Changing Climate on Crop Production
	21.3 Climate Change and Agriculture Sectors
	21.4 Case Study
	21.5 Farmers´ Adaptation Practices for Reducing the Salinization Problem
	21.6 Climate-Smart Agriculture in Bangladesh
	21.7 Conclusions and Recommendations
	References
Chapter 22: Climatic Challenge for Global Viticulture and Adaptation Strategies
	22.1 Introduction
	22.2 Botanical and Anatomical Characteristics
	22.3 Factors Influencing Viticulture
		22.3.1 Climate
		22.3.2 Topographic Features
		22.3.3 Soil Requirements
	22.4 Climate Change and Viticulture
		22.4.1 Elevated CO2 and Impacts on Viticulture
			22.4.1.1 Effect of Elevated CO2 on Vine Physiology
			22.4.1.2 Vine Growth, Yield and Anatomical Characteristics
		22.4.2 Effect of Water Stress on Viticulture
			22.4.2.1 Phenology, Growth and Yield Under Water Stress
			22.4.2.2 Effects on Vine Physiological Processes
			22.4.2.3 Effects on Grape Berry Quality and Composition
	22.5 Effect of Elevated Temperature on Viticulture
		22.5.1 Phenology, Growth and Yield Under High Temperature
		22.5.2 Fruit Quality and Composition
		22.5.3 Elevated Temperature and Grapevine Physiology
	22.6 Adaptation Strategies for Viticulture in the Wake of Climate Change
	22.7 Conclusion
	References




نظرات کاربران