دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mukhtar Ahmed
سری:
ISBN (شابک) : 3031149726, 9783031149726
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 627
[628]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Global Agricultural Production: Resilience to Climate Change به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تولید جهانی کشاورزی: انعطاف پذیری در برابر تغییرات آب و هوایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تمام جنبه های مربوط به تغییرات آب و هوا و کشاورزی را پوشش می دهد. این کتاب در مورد مدلهای جهانی آب و هوا (GCM)، پروژه مقایسهای مدل جفت شده (CMIP) و کاربرد ابزار مدیریت استراتژیک که شامل RCP (مسیر تمرکز نماینده)، SSP (مسیرهای اجتماعی-اقتصادی مشترک) و SPA (فرضهای سیاست آب و هوایی مشترک) است، بحث میکند.
این کتاب اطلاعاتی در مورد چگونگی ارتباط تغییرات آب و هوا، بهره وری کشاورزی و امنیت غذایی ارائه می دهد. اثرات تغییر آب و هوا بر امنیت غذایی از طریق محرک های آب و هوایی مختلف به عنوان مثال، ENSO (ال نینو-نوسان جنوبی) و SOI (شاخص نوسانات جنوبی) مورد مطالعه قرار می گیرد. این محرکها مسئول رویدادهای شدید آب و هوایی هستند، بنابراین پیشبینی زودهنگام این محرکها میتواند به طراحی اقدامات تطبیقی مناسب برای بخش کشاورزی کمک کند و میتواند به عنوان ابزار هشدار اولیه برای مدیریت ریسک در نظر گرفته شود.
به طور مشابه، تغییرات آب و هوا و مدل سازی خاک مبتنی بر فرآیند و همچنین نقش میکروب های خاک و کشاورزی هوشمند آب و هوا در این کتاب مورد بحث قرار گرفته است.تأثیر تغییر اقلیم بر تولید محصول حبوبات و استراتژیهای سازگاری با جزئیات در مورد مدلسازی محصول غلات، دیدگاههای ارائه شده است. Camelina sativa و همچنین سوخت زیستی کم ورودی و محصولات دانههای روغنی، انتشار گازهای گلخانهای (GHGs) و استراتژیهای کاهش.
This book covers all aspects related to climate change and agriculture. The book discusses Global Climate Models (GCMs), Coupled Model Intercomparison Project (CMIP) and application of strategic management tool that includes RCP (Representative concentration Pathway), SSP (Shared Socio-economic Pathways) and SPA (Shared climate Policy Assumptions).
The book provides information on how climate change, agricultural productivity and food security are interlinked. The impacts of climate change on food security are studied through different climatic drivers e.g., ENSO (El Niño–Southern Oscillation) and SOI (Southern Oscillation Index). These drivers are responsible for the climatic extreme events hence early prediction of these drivers could help to design appropriate adaptive measures for the agriculture sector and could be considered as early warning tools for risk management.
Similarly, climate change and process-based soil modeling as well as the role of soil microbes and climate smart agriculture are discussed in this book.Climate change impacts on legume crop production and adaptation strategies are presented, with details about cereal crop modeling, perspectives of Camelina sativa as well as low input biofuel and oilseed crop, greenhouse gases (GHGs) emissions and mitigation strategies.
Contents Chapter 1: Climate Change: An Overview 1.1 What Is Climate Change? 1.2 Climate Change and Coupled Model Intercomparison Project (CMIP) 1.2.1 Application of CMIP 1.3 Radiative Forcing (RF) and Climate Change 1.4 Drivers of Climate Change 1.4.1 Anthropogenic Drivers 1.4.1.1 Greenhouse Gases 1.4.1.2 Water Vapours 1.4.1.3 Ozone 1.4.1.4 Aerosols 1.4.1.5 Land Use Change (LUC) 1.4.1.6 Contrails 1.4.2 Natural Drivers 1.4.2.1 Solar Irradiance 1.4.2.2 Volcanoes 1.5 Scenario Analysis (RCP, SSP and SPA) 1.6 Indicators of Climate Change 1.7 Humidity as a Driver of Climate Change 1.8 Solar Dimming 1.9 Conclusion References Chapter 2: Climate Change, Agricultural Productivity, and Food Security 2.1 Introduction 2.2 Agricultural Productivity 2.3 Food Security 2.3.1 Sustainable Agriculture and Food Security 2.3.2 Global Food Security 2.3.3 Food Security in Pakistan 2.4 Climate Change and Food Security: Impacts 2.4.1 Climate Factors Affecting Food Security 2.4.2 Climate Change Extreme Events 2.4.3 Understanding Climate Change Extreme Events to Ensure Food Security 2.4.4 Climate Change and Rainfed Wheat Production: Simulation Study 2.4.5 Changing Planting Window: Adaptation Option for Enhancing Food Security 2.5 Potential Options to Manage Food Security and Climate Change 2.6 Conclusion References Chapter 3: Climate Change and Process-Based Soil Modeling 3.1 Soils and Climate Change 3.2 Understanding Soil 3.3 Soil Modules in Different Models 3.3.1 AquaCrop 3.3.2 Agricultural Production Systems sIMulator (APSIM)_Soil Module 3.3.3 Decision Support System for Agrotechnology Transfer (DSSAT)_Soil Module 3.3.4 CropSyst_Soil 3.3.4.1 CropSyst Carbon/Nitrogen Model 3.3.5 STTCS (Simulateur mulTIdisciplinaire Pour les Cultures Standard) 3.3.6 Erosion Productivity Impact Calculator (EPIC) 3.3.7 WOrld FOod Studies Crop Simulation Model (WOFOST) 3.3.8 DNDC (DeNitrification DeComposition) 3.4 Monitoring Soil Through Remote Sensing 3.5 Models Applications 3.6 Conclusion References Chapter 4: Soil Microbes and Climate-Smart Agriculture 4.1 Introduction 4.2 Soil Microbes and Sustainable Agriculture 4.3 Soil Microbes and Carbon Sequestration 4.4 Agricultural Practices and Carbon Sequestration 4.5 Climate Change and Soil Health Indicators 4.6 Soil Microbe Mitigating Climate Variability 4.7 Climate-Smart Agriculture 4.8 Soil Microbes and Global Agriculture 4.9 Microbial Contribution in Climate-Smart Agriculture References Chapter 5: Climate Change Impacts on Legume Crop Production and Adaptation Strategies 5.1 Introduction 5.2 Nutritional Benefits of Legumes 5.3 Area, Production and Yield of Grain Legumes 5.4 Legumes and Ecosystem Services 5.5 Pulses: The Dry Edible Legumes 5.6 Pulse Benefits to Climate 5.7 Pulses as Food Security Boosters 5.8 Impact of Climate Change on Pulse Production 5.9 Institutes Working on Pulse Improvement 5.10 Quantification of Climate Variability Impacts on Legume Crops 5.10.1 Impact of Elevated CO2 Concentration eCO2 on Legume Crops 5.10.2 Impact of High Temperature on Legume Crops 5.10.3 Impact of Water Stress on Legume Crops 5.11 Modelling and Simulation 5.12 Adaptation Options for Legumes to Climate Variability 5.13 Conclusion References Chapter 6: Cereal Crop Modeling for Food and Nutrition Security 6.1 Introduction 6.2 Global Challenges and Solutions to Ensure Food Security 6.3 Food Security and Nutrition 6.4 Keeping Away from Diversity Loss and Changing Land Use 6.5 Adaptation and Mitigation to Climate Change 6.6 The Role of Cereal Crop Models 6.7 Principle Disciplines and Integrating Innovations 6.8 Conclusion References Chapter 7: Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop 7.1 Introduction 7.2 Oilseed and Biofuel Crops Under Changing Climate 7.3 History 7.3.1 Native Range 7.3.2 Range 7.4 Classification 7.4.1 Taxonomy and Genetics 7.5 Plant Growth 7.5.1 Morphology 7.5.2 Phenology 7.5.3 Growth of Camelina: Overall Depiction 7.5.4 BBCH Scale for C. sativa 7.6 Reproduction 7.6.1 Floral Biology 7.7 Seed Production and Dispersal 7.7.1 Planting Time 7.7.2 Seed Rate 7.7.3 Seed Banks, Viability, and Germination 7.8 Camelina: Agronomy, Prospects, and Challenges 7.8.1 Sowing Date 7.8.2 Tillage 7.8.3 Seed Rate 7.8.4 Herbicide Control 7.8.5 Fertilizer Applications 7.8.6 Harvesting 7.8.7 Seed Yield 7.9 Potential of C. sativa Over Nonirrigated Areas Compared to Other Oilseeds 7.10 Constraints 7.11 Camelina Agronomic Performance, Oil Quality, Properties, and Potential 7.12 Camelina Response to Insects, Disease, Herbivory, and Higher Plant Parasites 7.12.1 Insects 7.13 Diseases 7.13.1 Fungal Diseases 7.13.2 Viral Diseases 7.13.3 Bacterial Diseases 7.13.4 Phytoplasmas 7.13.5 Invertebrates 7.14 Nutritional Values of Camelina Seed 7.15 Agro-industrial Uses 7.16 Camelina and Animal Feed 7.17 Biofuel 7.18 Alternative Uses 7.19 Camelina in the Fallow Season 7.20 Prospects for Future Research 7.20.1 Agronomic Research 7.20.2 Plant Breeding Efforts 7.21 Climate Change 7.22 Role of Camelina to Mitigate Climate Change Issues 7.23 Conclusion and Suggestions References Chapter 8: Greenhouse Gas Emissions and Mitigation Strategies in Rice Production Systems 8.1 Introduction 8.2 Rice Ecosystems 8.3 Paddy Soil Characteristics 8.4 Methane (CH4) Production and Emissions from Paddy Soils 8.4.1 Methanogenesis and Methanogens 8.4.1.1 Hydrolysis 8.4.1.2 Acidogenesis 8.4.1.3 Acetogenesis 8.4.1.4 Methanogenesis 8.4.2 Methane Emission Pathways 8.4.2.1 Diffusion 8.4.2.2 Ebullition 8.4.2.3 Plant-Mediated Transport 8.4.3 Methane Oxidation 8.4.3.1 Aerobic Methane Oxidation 8.4.3.2 Anaerobic Methane Oxidation 8.4.4 Factors Affecting Methane Production from Paddy Soils 8.5 Nitrous Oxide (N2O) Production and Emission from Rice Fields 8.5.1 Nitrogen Transformation in Flooded Soils (Volatilization, Leaching) 8.5.2 Processes Enabling Nitrous Oxide Emission from Rice Fields 8.5.2.1 Nitrification 8.5.2.2 Denitrification 8.6 Factors Influencing N2O Emission from Rice Fields 8.7 Strategies to Mitigate CH4 and N2O Emissions from Rice Fields 8.7.1 Water Management 8.7.2 Rice Varietal Selection 8.7.3 Planting Methods 8.7.4 Fertilizer Management 8.7.5 Nitrification Inhibitors and Slow-Release Fertilizers 8.7.6 Tillage Practices 8.8 Conclusion References Chapter 9: Fiber Crops in Changing Climate 9.1 Global Fiber Production 9.2 Fiber Crops Contribution in Climate Change 9.3 Impact of Climate Change on Fiber Crop Production 9.3.1 Cotton 9.3.2 Jute 9.3.3 Hemp 9.3.4 Flax 9.4 Impact of Climate Change on Fiber Quality 9.5 Fiber Crop Production Opportunities in Climate Change Scenarios 9.6 Climate Change Impacts on Pests 9.6.1 Cotton Bollworm 9.6.2 Natural Enemies 9.6.3 Fall Armyworm 9.6.4 Cotton Mealybug 9.6.5 Minor Pests 9.7 Fiber Crop Diseases 9.8 Future Recommendations and Conclusion References Chapter 10: Estimation of Crop Genetic Coefficients to Simulate Growth and Yield Under Changing Climate 10.1 Introduction 10.2 Crop Simulation Models and Genetic Coefficients 10.3 Common Methods of Estimating Genetic Coefficients 10.3.1 Field Experimentation 10.3.2 Trial and Error (TE) 10.3.3 GENotype Coefficient Calculator (GENCALC) 10.3.4 Downhill Simplex Method 10.3.5 Simulated Annealing Method 10.3.6 Generalized Likelihood Uncertainty Estimation (GLUE) 10.3.7 Parameter ESTimation (PEST) 10.3.8 Evolutionary Algorithm: Multi-objective Evolutionary Algorithm 10.3.9 Noisy Monte Carlo Genetic Algorithm (NMCGA) 10.3.10 Markov Chain Monte Carlo (MCMC) 10.4 Other New Promising Parameter Estimation Methods 10.4.1 Differential Evolution (DE) Algorithm 10.4.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 10.4.3 Particle Swarm Optimization (PSO) 10.4.4 Artificial Bee Colony (ABC) 10.4.5 Ensembling Approach 10.5 Statistical Evaluation of Performance of Genetic Coefficients 10.6 Conclusions References Chapter 11: Climate Change Impacts on Animal Production 11.1 Introduction 11.1.1 Global and Country Scenario of Climate Change 11.1.2 Animal Production Under Climate Variability 11.1.3 Demand for Animal Products 11.1.3.1 Population Growth 11.1.3.2 Growth in per Capita Income 11.1.3.3 Urbanization 11.1.4 Institutes Working on Animal Production Under Changing Climate 11.1.4.1 Livestock Census 11.2 Quantification of Climate Change 11.2.1 Overview of Responses to Temperature, Drought, and Carbon Dioxide 11.2.1.1 Temperature 11.2.1.2 Drought 11.2.1.3 Carbon Dioxide 11.2.2 Overview of Responses to Biotic Stress Such as Parasites 11.3 Impact of Climate Change on Livestock Production Systems 11.3.1 Quality of Feed 11.3.2 Health of Animals 11.3.3 Reproduction in Animals 11.3.4 Diseases in Animals 11.4 Impact of Climate Change on Animal Productivity 11.4.1 Milk Production 11.4.2 Wool Production 11.4.3 Poultry Production 11.4.4 Meat Production 11.5 Climate Change and Mortality 11.6 Modeling and Simulation 11.7 Adaptation Options 11.8 Conclusion References Chapter 12: Climate Change and Global Insect Dynamics 12.1 Introduction 12.2 Insect Production Under Climatic Variability 12.3 Institutes Working on Insect Production Under Changing Climate 12.4 Quantification of Climate Change 12.4.1 High Temperature 12.4.2 Carbon Dioxide 12.4.3 Drought 12.4.4 Biotic Stress 12.5 Modeling and Simulation 12.6 Adaptation Options 12.7 Conclusion References Chapter 13: Sustainable Solutions to Food Insecurity in Nigeria: Perspectives on Irrigation, Crop-Water Productivity, and Ante... 13.1 Introduction 13.1.1 Conceptual Framework for Effective Irrigation System 13.2 Methodology 13.3 Food Insecurity and Poverty in Nigeria 13.3.1 Irrigation, Poverty, and Food Insecurity Nexus 13.3.2 Irrigation Development as the Cornerstone of Food Security in Nigeria 13.3.3 Irrigation Potential in Nigeria 13.3.4 Role of Irrigation in Agricultural Production, Poverty Alleviation, Food Security, and Economy 13.4 Priorities for Sustainable Irrigation 13.5 Conclusion References Chapter 14: Functions of Soil Microbes Under Stress Environment 14.1 Introduction 14.1.1 Effect of Different Stress Environments on Microbes and Functions of Microbes in Mitigating That Stress 14.1.2 Functions of Microbes in Mitigating Stress for Plants 14.1.3 Functions of Microbes Under Nutrient Deficiency Stress 14.1.3.1 Bacteria High Concentration of Na+ and Functioning of PGPR in Minimizing Its Negative Impact Water-Deficit Stress Condition and Functioning of PGPR in Minimizing Its Negative Impact Functions of PGPR in Minimizing Stress Caused by Pathogens 14.1.3.2 Arbuscular Mycorrhizal Fungi Functions of Arbuscular Mycorrhizal Fungi in Different Stress Environments 14.2 Techniques to Study Microbial Functions 14.3 Conclusion References Chapter 15: Modeling Impacts of Climate Change and Adaptation Strategies for Cereal Crops in Ethiopia 15.1 Introduction 15.2 Methods 15.2.1 Study Sites, Data Sources, and Scenarios 15.2.2 Maize 15.2.3 Wheat 15.2.4 Barley 15.2.5 Sorghum 15.2.6 Teff 15.3 Results and Discussion 15.3.1 Maize 15.3.2 Wheat 15.3.3 Barley 15.3.4 Sorghum 15.3.5 Teff 15.4 Conclusions References Chapter 16: Strategies for Mitigating Greenhouse Gas Emissions from Agricultural Ecosystems 16.1 Introduction 16.2 Mitigation Opportunities: Increased Sinks and Reduced Emissions 16.2.1 Increasing Carbon Sequestration 16.2.1.1 Tillage Methods and Residue Management 16.2.1.2 Crop Selection and Rotation 16.2.2 Reducing Nitrous Oxide Emissions 16.2.2.1 4R of Fertilizer Management 16.2.2.2 Grazing and Manure Management 16.2.3 Reducing Methane Emissions 16.2.3.1 Improving Rumen Fermentation Efficiency and Productivity of Animals 16.2.3.2 Manure Management 16.2.3.3 Reducing CH4 Emissions from Flooded Rice Cultivation 16.2.4 Quantifying and Modeling GHG Fluxes 16.3 Conclusions References Chapter 17: Environmental and Economic Benefits of Sustainable Sugarcane Initiative and Production Constraints in Pakistan: A ... 17.1 Introduction 17.2 Sugarcane as an Energy Source 17.3 Overview of Sugarcane Production in Pakistan 17.4 The Current System of Sugarcane Production in Pakistan 17.4.1 Climate 17.4.2 Climate Change and Sugarcane Response 17.4.3 Preparation of Land 17.4.4 Time of Planting and Seed Rates 17.4.5 Methods of Planting 17.4.6 Fertilizers 17.4.7 Irrigation 17.4.8 Harvesting and Transportation 17.5 Sugarcane Crop: The Highest Consumer of Water 17.6 Sustainable Sugarcane Initiative (SSI) 17.6.1 Nursery Planting 17.6.2 Transplanting 17.6.3 Wider Spacing 17.6.4 Water-Efficient Utilization 17.6.5 An Organic Method of Cultivation 17.6.6 Intercropping with Other Crops 17.6.7 Overall Benefits of the SSI Method 17.7 Model Application of Sugarcane Crop 17.8 SSI Method of Cultivation 17.8.1 Selection of Bud 17.8.2 Treatment of Buds 17.8.3 Nursery 17.8.4 Preparation of the Main Field 17.8.5 Removal of Residues 17.8.6 Tillage 17.8.7 Application of Organic Fertilizers 17.8.8 Construction of Furrows, Ridges, and Transplanting 17.8.9 Reduction in Weed Loss and Mulching 17.8.10 Fertilizer Application Doses 17.8.11 Water Management 17.8.12 Earthing Up, De-trashing, and Propping 17.8.13 Protection of Plant 17.8.14 Intercropping and Harvesting 17.9 Benefits of the SSI Method 17.10 Conclusions References Chapter 18: Modeling Photoperiod Response of Canola Under Changing Climate Conditions 18.1 Introduction 18.2 Role of Models in Canola Production 18.3 Materials and Methods 18.3.1 Study Locations 18.3.2 Climatic Conditions During the Canola Growing Seasons 18.3.3 Experimental Design and Management Practices 18.3.4 Crop Measurements 18.3.5 Soil Measurements 18.3.6 Modeling Flowering Phase 18.3.6.1 Temperature Function Segmented Function (S) 18.3.6.2 Photoperiod Function Negative Exponential Function 18.3.7 Model Description 18.3.8 Model Calibration 18.3.8.1 Upscaling Strategies for Cultivar Parameters in Regional Simulation of Canola Growth 18.3.8.2 Strategy 1: Single-Site Parameter 18.3.8.3 Strategy 2: Virtual Cultivar Parameters Generated from Posterior Parameter Distributions 18.3.9 Model Performance Evaluation 18.3.10 Statistical Analysis 18.4 Results and Discussion 18.4.1 Climatic Parameters 18.4.1.1 Metrological Characteristics of NARC-Islamabad 18.4.1.2 Metrological Characteristics of URF-Koont 18.4.2 Agronomic Parameters 18.4.2.1 Days to Emergence 18.4.2.2 Days to Anthesis 18.4.2.3 Days to End of Flowering 18.4.2.4 Days to Maturity 18.4.2.5 Leaf Area Index 18.4.2.6 Biological Yield 18.4.2.7 Grain Yield 18.4.2.8 Harvest Index 18.4.3 Simulation Outcomes 18.4.3.1 Phenology 18.4.3.2 Leaf Area Index, Biomass and Grain Yield 18.5 Conclusions References Chapter 19: Modelling and Field-Based Evaluation of Vernalisation Requirement of Canola for Higher Yield Potential 19.1 Introduction 19.2 Crop Modelling and Canola Production Under Changing Climate 19.3 Materials and Methods 19.3.1 Phenological Modelling 19.3.2 Model Description 19.3.3 Model Calibration 19.3.3.1 Genetic Parameter Estimations with the DSSAT-GLUE Package 19.3.3.2 Upscaling Strategies for Cultivar Parameters in Regional Simulation of Canola Growth 19.3.3.3 Strategy 1: Single-Site Parameters (SSPs) 19.3.3.4 Strategy 2: Virtual Cultivar Parameters (VCPs) Generated from the Posterior Parameter Distributions 19.3.4 Model Performance Evaluation 19.3.5 Statistical Analysis 19.4 Results and Discussion 19.4.1 Climatic Specifications 19.4.2 Agronomic Parameters 19.4.2.1 Phenology 19.4.2.2 Biological and Grain Yield 19.4.2.3 Harvest Index 19.4.3 Phenology Modelling 19.4.4 Simulation Outcomes 19.4.4.1 Phenology 19.4.4.2 Leaf Area Index 19.4.4.3 Biological Yield 19.4.4.4 Grain Yield 19.4.4.5 Harvest Index 19.5 Conclusion References Chapter 20: Integrated Crop-Livestock System Case Study: Prospectus for Jordan´s Climate Change Adaptation 20.1 Introduction 20.2 Description and Characterization of Study Site 20.2.1 Animal Products 20.2.2 Types of Animal Farms 20.2.3 Forage Production: Demand and Supply 20.2.4 Plans Undertaken at a National Level 20.2.5 Climatic Change Impact 20.2.6 Site Description 20.2.7 Species Adaptation and Production Potential 20.2.8 Farmers´ Preference 20.2.9 Adaptation Strategies 20.3 Integration of the Farming Community in Seed-Production Technologies 20.3.1 Growth, Advancement and Dissemination of Seed-Production Facilities and Genotype Adoption 20.3.2 Seed Store 20.3.3 Machines 20.4 Landscape Scale Analysis of Crop Diversification and Effects on the Climate Change Scenario in the Crop-Livestock Farming... 20.4.1 Farmers´ Field School 20.5 Developing Seed Production Technology Packages: Guidelines and Application at the NARS and Farmers´ Level (Cultural Pract... 20.5.1 Grain Purity Maintenance 20.5.2 Role of NARS´s Formal Seed System, and Extension, and Dissemination of Conventional and Nonconventional Crops: Continua... 20.5.3 Integrated Crop Management Packages to Improve Livestock Production 20.5.4 Socioeconomic Impact of Improved Production Systems on Farmers´ Livelihoods in Marginal Environments 20.5.5 Improving Knowledge and Skills of Farmers and Agricultural Extension Staff in Marginal Environments 20.6 Summary References Chapter 21: Effect of Salinity Intrusion on Sediments in Paddy Fields and Farmers´ Adaptation Initiative: A Case Study 21.1 Introduction 21.2 Effect of Changing Climate on Crop Production 21.3 Climate Change and Agriculture Sectors 21.4 Case Study 21.5 Farmers´ Adaptation Practices for Reducing the Salinization Problem 21.6 Climate-Smart Agriculture in Bangladesh 21.7 Conclusions and Recommendations References Chapter 22: Climatic Challenge for Global Viticulture and Adaptation Strategies 22.1 Introduction 22.2 Botanical and Anatomical Characteristics 22.3 Factors Influencing Viticulture 22.3.1 Climate 22.3.2 Topographic Features 22.3.3 Soil Requirements 22.4 Climate Change and Viticulture 22.4.1 Elevated CO2 and Impacts on Viticulture 22.4.1.1 Effect of Elevated CO2 on Vine Physiology 22.4.1.2 Vine Growth, Yield and Anatomical Characteristics 22.4.2 Effect of Water Stress on Viticulture 22.4.2.1 Phenology, Growth and Yield Under Water Stress 22.4.2.2 Effects on Vine Physiological Processes 22.4.2.3 Effects on Grape Berry Quality and Composition 22.5 Effect of Elevated Temperature on Viticulture 22.5.1 Phenology, Growth and Yield Under High Temperature 22.5.2 Fruit Quality and Composition 22.5.3 Elevated Temperature and Grapevine Physiology 22.6 Adaptation Strategies for Viticulture in the Wake of Climate Change 22.7 Conclusion References