دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Nitis Mukhopadhyay. Partha Pratim Sengupta
سری:
ISBN (شابک) : 2020049874, 9781003143642
ناشر: Chapman and Hall/CRC
سال نشر: 2021
تعداد صفحات: 277
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Gini Inequality Index Methods and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش ها و کاربردهای شاخص نابرابری جینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ضریب جینی یا شاخص جینی در ابتدا به عنوان یک معیار استاندارد از پراکندگی آماری برای درک توزیع درآمد تعریف شد. این امر به اندازهگیری نابرابری در انواع توزیع ثروت، برابری جنسیتی، دسترسی به خدمات آموزشی و بهداشتی، سیاستهای زیستمحیطی و بسیاری از ویژگیهای مهم دیگر تکامل یافته است. شاخص نابرابری جینی: روشها و کاربردها دارای فصلهای اصلی با کیفیت بالا است که توسط محققان معتبر بینالمللی تهیه شده است. آنها روشهای نوآورانهای را اعم از کمی یا کیفی ارائه میکنند که شامل اقتصاد رفاه، اقتصاد توسعه، بهینهسازی/عدم بهینهسازی، اقتصادسنجی، کیفیت هوا، یادگیری آماری، استنتاج، تعیین اندازه نمونه، علم دادههای بزرگ و برخی اکتشافیها میشود.
Gini coefficient or Gini index was originally defined as a standardized measure of statistical dispersion intended to understand an income distribution. It has evolved into quantifying inequity in all kinds of distributions of wealth, gender parity, access to education and health services, environmental policies, and numerous other attributes of importance. Gini Inequality Index: Methods and Applications features original high-quality peer-reviewed chapters prepared by internationally acclaimed researchers. They provide innovative methodologies whether quantitative or qualitative, covering welfare economics, development economics, optimization/non-optimization, econometrics, air quality, statistical learning, inference, sample size determination, big data science, and some heuristics.
Cover Title Pages Half Title Copyright Page Dedication Page Contents Foreword: Giovanni Maria Gior Foreword: Shelemyahu Zacks Foreword: K.V. Mardia Preface Contributors 1 Introducing Informal Inequality Measures(IIMs) Constructed from U-statistics of Degree Three or Higher in Analyzing Economic Disparity 1.1 Introduction 1.1.1 A Brief Review of the Literature 1.1.2 A Modest Goal and the Layout of This Paper 1.2 Preliminaries, Illustrations, and Economic Persuasions Behind the New IIMs 1.2.1 Some Preliminaries 1.2.1.1 IIMs of Degree 3 1.2.1.2 IIMs of Degree 4 1.2.2 Economic Persuasions and Motivations via Illustrations 1.2.2.1 Illustration 2.1: Different Income DistributionsWith Same Misleading G 1.2.2.2 Illustration 2.2: Same Income Distribution with Different G 1.2.3 Illustrations via Simulations Under Gamma andLognormal Distributions 1.3 A General Class of New IIMs 1.3.1 Selected Properties of the New IIMs 1.3.2 Addressing the Pigou-Dalton Transfer Property 1.3.2.1 Empirical Validation of Pigou-Dalton Transfer 1.4 Moments of IIMs With Applications 1.4.1 A Consistent Estimator of ξ Defined Via (4.1) 1.4.2 Applications: Large-Sample Confidence Intervals for θkl 1.5 Illustrations With Real Data 1.5.1 One-Sample Problems 1.5.2 Two-Sample Problems 1.6 Concluding Thoughts 1.6.1 Special Attention to IIMs H21 and H31 1.6.2 Special Attention to IIM H22 1.6.3 Last Words Acknowledgments References 2 The Decomposition of the Gini Index Between and Within Groups: A Key Factor in Gender Studies An Application in the Context of Salary Distribution in Spain 2.1 Introduction 2.2 Methodology: Decomposition of the Gini Index Betweenand Within Groups 2.3 Description of the Data 2.4 Results: Evolution of Salary Concentration in Spainin the Period 2006–2014 2.4.1 Inequality Among the Group of Workers According to TheirPersonal, Work, and Company Characteristics 2.4.2 Comparison of Levels of Wage Concentration Within the Groupof Women Workers and the Group of Male Workers Accordingto Their Personal, Work, and Company Characteristics 2.4.3 Comparison of Gender Wage Concentration Levels Accordingto Personal, Work, and Company Characteristics 2.5 Conclusions Acknowledgments References 3 A Note on the Decomposition of Health Inequality by Population Subgroups in the Case of Ordinal Variables 3.1 Introduction 3.2 The Decomposition of Health Inequalityby Population Subgroups 3.2.1 The Proposal of Kobus and Miloś (2012) 3.2.2 The Gini-Related Index of Lv et al. (2015) 3.2.2.1 The Properties of the Index Introduced by Lv et al. (2015) 3.2.2.2 Decomposing by Population Subgroups the Gini-Related IndexProposed by Lv et al. (2015) 3.3 An Empirical Illustration References 4 The Gini Index Decomposition and Overlapping Between Population Subgroups 4.1 Introduction 4.2 Overlapping 4.2.1 The Measurement of Overlapping 4.2.1.1 The Probability of Transvariation 4.2.1.2 The Intensity of Transvariation 4.2.2 An Illustrative Example 4.3 The Gini Index Decomposition 4.3.1 Inequality Within 4.3.2 Inequality Between and Overlapping Component 4.3.2.1 Mean-Based Evaluations 4.3.2.2 Distribution-Based Evaluations 4.3.3 The Comparison of Decompositions 4.3.4 An Illustrative Example 4.4 Inequality Decomposition, Overlapping, and Political Economy: The Analysis of Gender Gap 4.4.1 An Illustrative Example 4.4.2 A Case Study: The Italian Personal Income by Gender 4.5 Conclusions References 5 Gini's Mean Difference-Based Minimum Risk Point Estimator of Mean 5.1 Introduction 5.1.1 Problem Formulation 5.1.2 Contribution 5.2 Purely Sequential Procedure 5.2.1 Pilot Sample Size Computation 5.3 Characteristics 5.4 Simulation Study 5.5 Conclusion References 6 The Gini Concentration Index for the Studyof Survival 6.1 Introduction 6.2 Estimation of the Gini Concentration Index from Incomplete Data 6.2.1 Some Types of Incomplete Survival (or Income) Data 6.2.2 Parametric and Nonparametric Estimation 6.2.2.1 The Restricted Gini Index and Test 6.2.3 Estimation with Dependent Censoring 6.3 The Gini Concentration Index for the Study of Survival in Demography 6.3.1 Nonhuman Populations 6.3.2 Decomposition, Forecasting, and Interpretation of Inequality 6.4 A Family of Survival Models for Longevity and Concentration 6.5 Final Comment References 7 An Axiomatic Analysis of Generalized Gini Air Quality Indices 7.1 Introduction 7.2 Single-Pollutant Air Quality Indices: An Illustrative Discussion 7.3 Axioms for a Composite Air Quality Index 7.4 Composite Air Quality Indices: A Brief Illuminating Discussion 7.5 The Characterization Theorems 7.6 Conclusions Acknowledgments References 8 Sequential Confidence Set and Point Estimation of the Population Gini Index by Controlling Accuracies Relative to the Population Mean 8.1 Introduction 8.1.1 Revised Loss Functions 8.1.2 An Overview and the Layout of the Paper 8.2 Relative-Accuracy Confidence Set Estimation 8.2.1 Purely Sequential Sampling Methodology 8.2.2 Asymptotic First-Order Properties 8.3 Minimum Relative Risk Point Estimation (MRRPE) 8.4 Simulation Studies 8.4.1 Confidence Set Estimation 8.4.2 Point Estimation 8.5 Appendix with Selected Technicalities 8.5.1 Proof of Theorem 8.3 8.5.2 Proof of Theorem 8.4 Acknowledgments References 9 A Test on Correlation Based on Gini's Mean Difference 9.1 Introduction 9.2 Testing on Correlation 9.2.1 Analysis of the GMD for Correlated Variables 9.2.2 Tests Based on the GMD 9.2.3 Analysis of the Power Function of the Test Based on Tn(1) 9.2.4 Comparison of Several Tests Based on the GMD 9.3 Application in Statistical Process Control 9.4 Conclusions References 10 Segregation Measures for Different Forms of Categorical Data: Reinterpretation and Proposal 10.1 Introduction 10.2 Segregation Measure for Nominal Categorical Data 10.2.1 Basic Notations and Definitions 10.2.2 The Set of Axiomatic Properties Required in the Analysis of Segregation 10.2.3 Measures Defined from the Concept of Association 10.2.4 Measure of Segregation Constructed from Unequal Representation 10.3 Segregation Measures for Ordinal Categorical Data 10.3.1 Basic Notations and Definition 10.3.2 An Axiomatic Characterization of the Segregation Measures 10.3.3 Measure Defined from the Concept of Association 10.3.4 Measure Defined from the Concept of Unequal Representation 10.4 Conclusion Appendix I Proof of the Proposition 1 Appendix II Proof of the Proposition 2 Appendix III Proof of the Proposition 3 Appendix IV Proof of the Proposition 4 References 11 Exploring Fixed-Accuracy Estimationfor Population Gini Inequality Index Under Big Data: A Passage to Practical Distribution-Free Strategies 11.1 Introduction 11.1.1 Recent Developments in Sequential Estimation Strategies 11.1.1.1 Fixed-Width Confidence Interval (FWCI) Strategy 11.1.1.2 Minimum Risk Point Estimation (MRPE) Strategy 11.1.2 Big Data Era 11.1.3 A Broader Overview 11.1.4 The Layout of the Chapter 11.2 New FWCI and MRPE Formulations Under Big Data 11.2.1 The Foundation and Structure 11.2.2 The FWCI Problem: Determination of the Optimal Number r 11.2.3 The MRPE Problem: Determination of the Optimal Number r 11.2.4 A Suggested Guide for Choices of k 11.2.5 Estimation of the Asymptotic Variance 11.3 Sequential Estimation Strategy for the FWCI Problem 11.3.1 Asymptotic First-Order Results 11.3.2 Asymptotic Normality of Stopping Time 11.3.3 Heuristics on Asymptotic Second-Order Results: A Practical Guide 11.4 Sequential Estimation Strategy for the MRPE Problem 11.4.1 Asymptotic First-Order Results 11.4.2 Asymptotic Second-Order Results: A Brief Outline 11.5 Concluding Thoughts: Flexibility of the Proposed Approachin Big Data Science Acknowledgments References Index