دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: University. The Open
سری:
ناشر: The Open University
سال نشر: 2018
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 170 کیلوبایت
در صورت تبدیل فایل کتاب Getting started on classical Latin به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شروع با لاتین کلاسیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ترمودینامیک اعمال شده در سیستمهای انرژی را میتوان با یک روش آموزشی اصلی که با رویکردی متفاوت شروع میشود و ثابت کرده سادهتر از روشهای موجود است، آموزش داد. کتابهایی در مورد محاسبات ترمودینامیک که به محاسبات انرژی به عنوان هدف نزدیک میشود. سبک، محتوا، تنظیم و رویکرد آن به شدت متفاوت از متون موجود در این زمینه است و بسته نرمافزاری به دانشآموزان و معلمان کمک میکند تا مهارتهای دانشآموزان را بیشتر توسعه دهند. این نرم افزار که برای استفاده با نرم افزار Thermoptim و دفترچه راهنما توسعه یافته است، به دانش آموز اجازه می دهد تا بیش از 200 مثال، کتابچه راهنما و برنامه نویسی و ابزار طراحی را برای حل تمرین ها در تمام سطوح پیچیدگی مطالعه کند. استفاده از این نرم افزار آسان است و دانش آموز را قادر می سازد تا به طور کامل عملیاتی شود. نسخه دانشجویی Thermoptim به صورت رایگان در دسترس است معلمان می توانند پس از ثبت نام گزینه های گسترده تری را از برنامه خارج کنند. یک نسخه حرفه ای نیز موجود است و توسط بیش از 30 شرکت و موسسه تحقیقاتی اقتباس شده است. این جلد مروری کلی از فناوری های مختلف تبدیل انرژی در اختیار خواننده قرار می دهد و به درک تحولات اخیر و اصول طراحی کمک می کند: توربین های گازی و ترکیبی. چرخهها، موتورهای هوافضا، موتورهای دیزلی و جرقهزنی، موتورهای استرلینگ، نیروگاههای بخار، واحدهای تولید همزمان، ماشینهای تبرید، پمپهای حرارتی، نیروگاههای تهویه مطبوع، مبدلهای انرژی نوآورانه، انرژیهای نو و تجدیدپذیر و غیره. علاوه بر این، نحوه ساخت را نشان میدهد. مدلهای مناسب برای واقعیت فناوری پل و مبانی نظری مهندسی انرژی، توضیح میدهد که چگونه مدلهایی با Thermoptim بسازیم. علاوه بر این، روشن میکند و نشان میدهد که چگونه نرمافزار میتواند به حل مشکلات مدلسازی ناشی از طراحی فنآوری قطعات و عملکرد انحرافی سیستمها کمک کند. -دانشجویان سطح و دانشجویان سال اول یا دوم کارشناسی ارشد در رشته های مهندسی مکانیک و حرارت و سایر رشته های مهندسی. دانشآموزان و متخصصان پیشرفته نیز بسیار از آن بهرهمند خواهند شد.\"این کتاب جامعی در مورد سیستمهای انرژی با پوشش تقریباً دایرهالمعارفی جزئیات تجهیزات و سیستمهای مربوط به تولید برق، تبرید و تهویه مطبوع است. محتوای با نرم افزار پیشرفته به طیف وسیعی از کاربران از دانش آموزانی که شروع به مطالعه خود می کنند تا کسانی که درگیر تحقیق در مورد چرخه های امیدوارکننده هستند، اجازه می دهد. سرعت در برنامهها و انگیزهای برای مطالعه بیشتر فراهم میکند. این کتاب نوید میدهد که مهندسان برای مرجع آماده و مطالعه روی میز خود نگه خواهند داشت.» جان دبلیو میچل، استاد مهندسی مکانیک، استاد بازنشسته، دانشگاه ویسکانسین- مدیسون، مدیسون، ویسکانسین، ایالات متحده آمریکا "--
"Considered as particularly difficult by generations of students and engineers, thermodynamics applied to energy systems can now be taught with an original instruction method that starts with a different approach and that has proven to be simpler than existing methods.Energy Systems is different from related books on thermodynamics calculations as it approaches energy calculations as the objective. Its style, content, setup and approach is drastically different from existing texts on the subject, and the software package will offer both students and teachers help to further develop the students' skills. Developed for use with the Thermoptim software and manual, it allows the student to study over 200 examples, manuals and programming and design tools to solve exercises at all levels of complexity. The software is easy to use and enables the student to become fully operational. The student version of Thermoptim is freely available teachers can get more extended options out of the program after registration. A professional edition is also available and has been adapted by more than 30 many companies and research institutes.This volume provides the reader with an overall review of various energy conversion technologies, and help to understand the recent evolutions and design principles: gas turbines and combined cycles, aerospace engines, Diesel and spark ignition engines, Stirling engines, steam power plants, cogeneration units, refrigeration machines, heat pumps, air-conditioning plants, innovative energy converters, new and renewable energy, etc.Moreover, it shows how to build appropriate models to the bridge technological reality and theoretical bases of energy engineering, explaining how to build models with Thermoptim. Moreover, it clarifies and shows how the software can help solving the modeling problems caused by the technological design of components and by deviating operation of systems.This volume is developed and intended for courses of applied thermodynamics, energy systems and energy conversion to 3rd year Bachelor-level students and 1st or 2nd year Master-level students in mechanical and thermal engineering and other engineering disciplines. Advanced students and professionals will also greatly benefit from it."This is a comprehensive book on energy systems with an almost encyclopedic coverage of the details of the equipment and systems involved in power production, refrigeration, and air-conditioning. The integration of technical content with advanced software allows a range of users from students who are beginning their study to those involved in research on promising cycles. From a teaching perspective, the initial focus on the system level combined with the simulation tool Thermoptim serves to quickly bring students up to speed on applications, and provides motivation for further study. This book promises to be one that engineers will keep on their desks for ready reference and study." John W. Mitchell, Kaiser Chair Professor of Mechanical Engineering, Emeritus, University of Wisconsin-Madison, Madison, Wisconsin, USA"--
Note continued: 9.3.1. Principle of the machine and problem data --
9.3.2. Creation of the diagram --
9.3.3. Creation of simulator elements --
9.3.4. Setting points --
9.3.5. Setting of processes --
9.4. Air conditioning installation --
9.4.1. Principle of installation and problem data --
9.4.2. Supply conditions --
9.4.3. Properties of the mix (outdoor air/recycled air) --
9.4.4. Air treatment --
9.4.5. Plot on the psychrometric chart --
10. General Issues on Cycles, Energy and Exergy Balances --
10.1. General issues on cycles, notations --
10.1.1. Motor cycles --
10.1.2. Refrigeration cycles --
10.1.3. Carnot cycle --
10.1.4. Regeneration cycles --
10.1.5. Theoretical and real cycles --
10.1.6. Notions of efficiency and effectiveness --
10.2. Energy and exergy balance --
10.2.1. Energy balances --
10.2.2. Exergy balances --
10.2.3. Practical implementation in a spreadsheet --
10.2.4. Exergy balances of complex cycles --
10.3. Productive structures --
10.3.1. Establishment of a productive structure --
10.3.2. Relationship between the diagram and the productive structure --
10.3.3. Implementation in Thermoptim --
10.3.4. Automation of the creation of the productive structure --
10.3.5. Examples --
10.3.6. Conclusion --
References --
3. Main Conventional Cycles --
11. Introduction: Changing Technologies --
11.1. Limitation of fossil resources and geopolitical constraints --
11.2. Local and global environmental impact of energy --
11.2.1. Increase in global greenhouse effect --
11.2.2. Reduction of the ozone layer --
11.2.3. Urban pollution and acid rain --
11.3. Technology transfer from other sectors --
11.4. Technological innovation key to energy future --
References --
Further reading --
12. Internal Combustion Turbomotors --
12.1. Gas turbines --
12.1.1. Operating principles --
12.1.2. Examples of gas turbines --
12.1.3. Major technological constraints --
12.1.4. Basic cycles --
12.1.5. Cycle improvements --
12.1.6. Mechanical configurations --
12.1.7. Emissions of pollutants --
12.1.8. Outlook for gas turbines --
12.2. Aircraft engines --
12.2.1. Turbojet and turboprop engines --
12.2.2. Reaction engines without rotating machine --
References --
Further reading --
13. Reciprocating Internal Combustion Engines --
13.1. General operation mode --
13.1.1. Four- and two-stroke cycles --
13.1.2. Methods of cooling --
13.2. Analysis of theoretical cycles of reciprocating engines --
13.2.1. Beau de Rochas ideal cycle --
13.2.2. Diesel cycle --
13.2.3. Mixed cycle --
13.2.4. Theoretical associated cycles --
13.3. Characteristic curves of piston engines --
13.3.1. Effective performance, MEP and power factor --
13.3.2. Influence of the rotation speed --
13.3.3. Indicated performance, IMEP --
13.3.4. Effective performance, MEP --
13.3.5. Specific consumption of an engine --
13.4. Gasoline engine --
13.4.1. Limits of knocking and octane number --
13.4.2. Strengthening of turbulence --
13.4.3. Formation of fuel mix, fuel injection electronic systems --
13.4.4. Real cycles of gasoline engines --
13.5. Diesel engines --
13.5.1. Compression ignition conditions --
13.5.2. Ignition and combustion delays --
13.5.3. Air utilization factor --
13.5.4. Thermal and mechanical fatigue --
13.5.5. Cooling of walls --
13.5.6. Fuels burnt in diesel engines --
13.5.7. Real cycles of diesel engines --
13.6. Design of reciprocating engines --
13.7. Supercharging --
13.7.1. General --
13.7.2. Basic principles --
13.7.3. Conditions of autonomy of a turbocharger --
13.7.4. Adaptation of the turbocharger --
13.7.5. Conclusions on supercharging --
13.8. Engine and pollutant emission control --
13.8.1. Emissions of pollutants: Mechanisms involved --
13.8.2. Combustion optimization --
13.8.3. Catalytic purification converters --
13.8.4. Case of diesel engines --
13.9. Technological prospects --
13.9.1. Traction engines --
13.9.2. Large gas and diesel engines --
References --
Further reading --
14. Stirling Engines --
14.1. Principle of operation --
14.2. Piston drive --
14.3. Thermodynamic analysis of Stirling engines --
14.3.1. Theoretical cycle --
14.3.2. Ideal Stirling cycle --
14.3.3. Paraisothermal Stirling cycle --
14.4. Influence of the pressure --
14.5. Choice of the working fluid --
14.6. Heat exchangers --
14.6.1. Cooler --
14.6.2. Regenerator --
14.6.3. Boiler --
14.7. Characteristics of a Stirling engine --
14.8. Simplified Stirling engine Thermoptim model --
References --
Further reading --
15. Steam Facilities (General) --
15.1. Introduction --
15.2. Steam enthalpy and exergy --
15.3. General configuration of steam facilities --
15.4. Water deaeration --
15.4.1. Chemical deaeration --
15.4.2. Thermal deaeration --
15.5. Blowdown --
15.6. Boiler and steam generators --
15.6.1. Boilers --
15.6.2. Steam generators --
15.6.3. Boiler operation --
15.6.4. Optimization of pressure level --
15.7. Steam turbines --
15.7.1. Different types of steam turbines --
15.7.2. Behavior in off-design mode --
15.7.3. Degradation of expansion efficiency function of steam quality --
15.7.4. Temperature control by desuperheating --
15.8. Condensers, cooling towers --
15.8.1. Principle of operation of cooling towers --
15.8.2. Phenomenological model --
15.8.3. Behaviour models --
15.8.4. Modeling a direct contact cooling tower in Thermoptim --
References --
Further reading --
16. Classical Steam Power Cycles --
16.1. Conventional flame power cycles --
16.1.1. Basic Hirn or Rankine cycle with superheating --
16.1.2. Energy and exergy balance --
16.1.3. Thermodynamic limits of simple Hirn cycle --
16.1.4. Cycle with reheat --
16.1.5. Cycle with extraction --
16.1.6. Supercritical cycles --
16.1.7. Binary cycles --
16.2. Technology of flame plants --
16.2.1. General technological constraints --
16.2.2. Main coal power plants --
16.2.3. Emissions of pollutants --
16.3. Nuclear power plant cycles --
16.3.1. Primary circuit --
16.3.2. Steam generator --
16.3.3. Secondary circuit --
16.3.4. Industrial PWR evolution --
Reference --
Further reading --
17. Combined Cycle Power Plants --
17.1. Combined cycle without afterburner --
17.1.1. Overall performance --
17.1.2. Reduced efficiency and power --
17.2. Combined cycle with afterburner --
17.3. Combined cycle optimization --
17.4. Gas turbine and combined cycles variations --
17.5. Diesel combined cycle --
17.6. Conclusions and outlook --
References --
Further reading --
18. Cogeneration and Trigeneration --
18.1. Performance indicators --
18.2. Boilers and steam turbines --
18.3. Internal combustion engines --
18.3.1. Reciprocating engines --
18.3.2. Gas turbines --
18.4. Criteria for selection --
18.5. Examples of industrial plants --
18.5.1. Micro-gas turbine cogeneration --
18.5.2. Industrial gas turbine cogeneration --
18.6. Trigeneration --
18.6.1. Production of central heating and cooling for a supermarket --
18.6.2. Trigeneration by micro turbine and absorption cycle --
References --
Further reading --
19. Compression Refrigeration Cycles, Heat Pumps --
19.1. Principles of operation --
19.2. Current issues --
19.2.1. Stopping CFC production --
19.2.2. Substitution of fluids --
19.3. Basic refrigeration cycle --
19.3.1. Principle of operation --
19.3.2. Energy and exergy balances --
19.4. Superheated and sub-cooled cycle --
19.4.1. Single-stage cycle without heat exchanger --
19.4.2. Single-stage cycle with exchanger --
19.5. Two-stage cycles --
19.5.1. Two-stage compression cycle with intermediate cooling --
19.5.2. Compression and expansion multistage cycles --
19.6. Special cycles --
19.6.1. Cascade cycles --
19.6.2. Cycles using blends --
19.6.3. Cycles using ejectors --
19.6.4. Reverse Brayton cycles --
19.7. Heat pumps --
19.7.1. Basic cycle --
19.7.2. Exergy balance --
19.8. Technological aspects --
19.8.1. Desirable properties for fluids --
19.8.2. Refrigeration compressors --
19.8.3. Expansion valves --
19.8.4. Heat exchangers --
19.8.5. Auxiliary devices --
19.8.6. Variable speed --
References --
Further reading --
20. Liquid Absorption Refrigeration Cycles --
20.1. Introduction --
20.2. Study of a NH3-H2O absorption cycle --
20.3. Modeling LiBr-H2O absorption cycle in Thermoptim --
References --
21. Air Conditioning --
21.1. Basics of an air conditioning system --
21.2. Examples of cycles --
21.2.1. Summer air conditioning --
21.2.2. Winter air conditioning --
References --
Further reading --
22. Optimization by Systems Integration --
22.1. Basic principles --
22.1.1. Pinch point --
22.1.2. Integration of complex heat system --
22.2. Design of exchanger networks --
22.3. Minimizing the pinch --
22.3.1. Implementation of the algorithm --
22.3.2. Establishment of actual composite curves --
22.3.3. Plot of the Carnot factor difference curve (CFDC) --
22.3.4. Matching exchange streams --
22.3.5. Thermal machines and heat integration --
22.4. Optimization by irreversibility analysis --
22.4.1. Component irreversibility and systemic irreversibility --
22.4.2. Optimization method --
22.5. Implementation in Thermoptim --
22.5.1. Principle --
22.5.2. Optimization frame --
22.6. Example --
22.6.1. Determination of HP and LP flow rates --
22.6.2. Matching fluids in heat exchangers --
References --
Further reading Note continued: 4. Innovative Advanced Cycles, including Low Environmental Impact --
23. External Class Development --
23.1. General, external substances --
23.1.1. Introducing custom components --
23.1.2. Simple substance: example of DowTherm A --
23.1.3. Coupling to a thermodynamic properties server --
23.2. Flat plate solar collectors --
23.2.1. Design of the external component --
23.3. Calculation of moist mixtures in external classes --
23.3.1. Introduction --
23.3.2. Methods available in the external classes --
23.4. External combustion --
23.4.1. Model of biomass combustion --
23.4.2. Presentation of the external class --
23.5. Cooling coil with condensation --
23.5.1. Modeling a cooling coil with condensation in Thermoptim --
23.5.2. Study of the external class DehumidifyingCoil --
23.6. Cooling towers --
23.6.1. Modeling of a direct contact cooling tower in Thermoptim --
23.6.2. Study of external class DirectCoolingTower --
23.7. External drivers --
23.7.1. Stirling engine driver --
23.7.2. Creation of the class: visual interface --
23.7.3. Recognition of component names --
23.7.4. Calculations and display --
23.8. External class manager --
24. Advanced Gas Turbines Cycles --
24.1. Humid air gas turbine --
24.2. Supercritical CO2 cycles --
24.2.1. Simple regeneration cycle --
24.2.2. Pre-compression cycle --
24.2.3. Recompression cycle --
24.2.4. Partial cooling cycle --
24.3. Advanced combined cycles --
24.3.1. Air combined cycle --
24.3.2. Steam flash combined cycle --
24.3.3. Steam recompression combined cycle --
24.3.4. Kalina cycle --
References --
25. Evaporation, Mechanical Vapor Compression, Desalination, Drying by Hot Gas --
25.1. Evaporation --
25.1.1. Single-effect cycle --
25.1.2. Multi-effect cycle --
25.1.3. Boiling point elevation --
25.2. Mechanical vapor compression --
25.2.1. Evaporative mechanical vapor compression cycle --
25.2.2. Types of compressors used --
25.2.3. Design parameters of a VC --
25.3. Desalination --
25.3.1. Simple effect distillation --
25.3.2. Double effect desalination cycle --
25.3.3. Mechanical vapor compression desalination cycle --
25.3.4. Desalination ejector cycle --
25.3.5. Multi-stage flash desalination cycle --
25.3.6. Reverse osmosis desalination --
25.4. Drying by hot gas --
References --
26. Cryogenic Cycles --
26.1. Joule-Thomson isenthalpic expansion process --
26.1.1. Basic cycle --
26.1.2. Linde cycle --
26.1.3. Linde cycles for nitrogen liquefaction --
26.2. Reverse Brayton cycle --
26.3. Mixed processes: Claude cycle --
26.4. Cascade cycles --
References --
27. Electrochemical Converters --
27.1. Fuel cells --
27.1.1. SOFC modeling --
27.1.2. Improving the cell model --
27.1.3. Model with a thermocoupler --
27.1.4. Coupling SOFC fuel cell with a gas turbine --
27.1.5. Change in the model to replace H2 by CH4 --
27.2. Reforming --
27.2.1. Modeling of a reformer in Thermoptim --
27.2.2. Results --
27.3. Electrolysers --
27.3.1. Modeling of a high temperature electrolyser in Thermoptim --
27.3.2. Results --
References --
28. Global Warming and Capture and Sequestration of CO2 --
28.1. Problem data --
28.2. Carbon capture and storage --
28.2.1. Introduction --
28.2.2. Capture strategies --
28.3. Techniques implemented --
28.3.1. Post-combustion techniques --
28.3.2. Pre-combustion techniques --
28.3.3. Oxycombustion techniques --
References --
29. Future Nuclear Reactors --
29.1. Introduction --
29.2. Reactors coupled to Hirn cycles --
29.2.1. Sodium cooled fast neutron reactors --
29.2.2. Supercritical water reactors --
29.3. Reactors coupled to Brayton cycles --
29.3.1. Small capacity modular reactor PBMR --
29.3.2. GT-MHR reactors --
29.3.3. Very high temperature reactors --
29.3.4. Gas cooled fast neutron reactors --
29.3.5. Lead cooled fast reactors --
29.3.6. Molten salt reactors --
29.3.7. Thermodynamic cycles of high temperature reactors --
29.4. Summary --
References --
30. Solar Thermodynamic Cycles --
30.1. Direct conversion of solar energy --
30.1.1. Introduction --
30.1.2. Thermal conversion of solar energy --
30.1.2. Thermodynamic cycles considered --
30.2. Performance of solar collectors --
30.2.1. Low temperature solar collectors --
30.2.2. Low temperature flat plate solar collector model --
30.2.3. High temperature solar collectors --
30.2.4. Modeling high temperature concentration collectors --
30.3. Parabolic trough plants --
30.3.1. Optimization of the collector temperature --
30.3.2. Plant model --
30.4. Parabolic dish systems --
30.5. Power towers --
30.6. Hybrid systems --
References --
31. Other than Solar NRE cycles --
31.1. Solar ponds --
31.1.1. Analysis of the problem --
31.1.2. Plot of the cycle in the entropy chart --
31.1.3. Exergy balance --
31.1.4. Auxiliary consumption --
31.2. Ocean thermal energy conversion (OTEC) --
31.2.1. OTEC closed cycle --
31.2.2. OTEC open cycle --
31.2.3. Uehara cycle --
31.3. Geothermal cycles --
31.3.1. Direct-steam-plants --
31.3.2. Simple flash plant --
31.3.3. Double flash plant --
31.3.4. Binary cycle plants --
31.3.5. Kalina cycle --
31.3.6. Combined cycles --
31.3.7. Mixed cycle --
31.4. Use of biomass energy --
31.4.1. Introduction --
31.4.2. Modeling thermochemical conversion --
References --
32. Heat and Compressed Air Storage --
32.1. Introduction --
32.2. Methodological aspects --
32.3. Cold storage in phase change nodules --
32.4. Project Sether (electricity storage as high temperature heat) --
32.5. Compressed air storage devices --
32.5.1. CAES (Compressed Air Energy Storage) concept --
32.5.2. Peaker concept of Electricite de Marseille Company --
32.5.3. Hydropneumatic energy storage HPES --
References --
33. Calculation of Thermodynamic Solar Installations --
33.1. Specific solar problems --
33.2. Estimation of the solar radiation received by a solar collector --
33.3. Cumulative frequency curves of irradiation --
33.3.1. Curve construction --
33.3.2. Curve smoothing --
33.3.3. Estimation of CFCS from empirical formulas --
33.3.4. Interpolation on tilt --
33.4. Hourly simulation models --
33.5. Simplified design methods --
33.5.1. Principle of methods --
33.5.2. Usability curves --
References --
5. Technological Design and Off-design Operation --
34. Technological Design and Off-design Operation, Model Reduction --
34.1. Introduction --
34.2. Component technological design --
34.2.1. Heat exchangers --
34.2.2. Displacement compressors --
34.2.3. Expansion valves --
34.2.4. Practical example: design of a cycle --
34.3. Off-design calculations --
34.3.1. Principle of computing coupled systems in Thermoptim --
34.3.2. Off-design equations of the refrigerator --
34.3.3. After processing of simulation results --
34.3.4. Effect of change in UA --
34.4. Development of simplified models of systems studied --
34.4.1. Model reduction principle --
34.4.2. Model reduction example --
34.5. Methodological difficulties --
References --
35. Technological Design and Off-design Behavior of Heat Exchangers --
35.1. Introduction --
35.1.1. General --
35.1.2. Reminders on the NTU method --
35.2. Modeling of heat transfer --
35.2.1. Extended surfaces --
35.2.2. Calculation of Reynolds and Prandtl numbers --
35.2.3. Calculation of the Nusselt number --
35.2.4. Calculation of multi-zone exchangers --
35.3. Pressure drop calculation --
35.3.1. Gas or liquid state pressure drop --
35.3.2. Two-phase pressure drop --
35.4. Heat exchanger technological screen --
35.4.1. Heat exchanger technological screen --
35.4.2. Correlations used in Thermoptim --
35.5. Model parameter estimation --
35.5.1. Direct setting from geometric data --
35.5.2. Identification of exchanger parameters --
References --
36. Modeling and Setting of Displacement Compressors --
36.1. Behavior models --
36.1.1. Operation at rated speed and full load --
36.1.2. Operation at partial load and speed --
36.2. Practical modeling problems --
36.2.1. Technological screen of displacement compressors --
36.2.3. Identification of compressor parameters --
36.2.4. Calculation in design mode --
36.2.5. Calculation in off-design mode --
36.2.6. Fixed Vi screw compressors --
References --
37. Modeling and Setting of Dynamic Compressors and Turbines --
37.1. Supplements on turbomachinery --
37.1.1. Analysis of the velocity triangle --
37.1.2. Degree of reaction of one stage --
37.1.3. Theoretical characteristics of turbomachinery --
37.1.4. Real characteristics of turbomachinery --
37.1.5. Factors of similarity --
37.2. Pumps and fans --
37.3. Dynamic compressors --
37.3.1. Performance maps of dynamic compressors --
37.3.2. Analysis of performance maps of dynamic compressors --
37.3.3. Technological screen of dynamic compressors --
37.4. Turbines --
37.4.1. Performance maps of turbines --
37.4.2. Isentropic efficiency law --
37.4.3. Stodola's cone rule --
37.4.4. Baumann rule --
37.4.5. Loss by residual velocity --
37.4.6. Technological screen of turbines --
37.4.8. Identification of turbine parameters --
37.5. Nozzles --
References --
38. Case Studies --
38.1. Introduction --
38.2. Compressor filling a storage of compressed air --
38.2.1. Modeling of the heat exchanger --
38.2.2. Design of the driver --
38.2.3. Analysis of the cooled compressor Note continued: 38.2.4. Use of the model to simulate the filling of a compressed air storage --
38.3. Steam power plant --
38.3.1. Introduction, results --
38.4. Refrigeration machine --
38.4.1. Introduction, results --
38.4.2. Principle of resolution --
38.5. Single flow turbojet --
38.5.1. Introduction, results --
38.5.2. Presentation of the external class.