دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: INGRID BUCHER KURT STOBER
سری:
ISBN (شابک) : 9783030716844, 3030716848
ناشر: SPRINGER NATURE
سال نشر: 2021
تعداد صفحات: 392
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب GEOTHERMAL ENERGY : from theoretical models to exploration and development. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انرژی زمین گرمایی: از مدل های نظری تا اکتشاف و توسعه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Thermal Structure of the Earth 1.1 Renewable Energies, Global Aspects 1.2 Internal Structure of the Earth 1.3 Energy Budget of the Planet 1.4 Heat Transport and Thermal Parameters 1.5 Brief Outline of Methods for Measuring Thermal Parameters 1.6 Measuring Subsurface Temperatures References 2 History of Geothermal Energy Use 2.1 Early Utilization of Geothermal Energy 2.2 History of Utilization of Geothermal Energy in the Last 150 Years References 3 Geothermal Energy Resources 3.1 Energy 3.2 Significance of “Renewable” Energy 3.3 Status of Geothermal Energy Utilization 3.4 Geothermal Energy Sources References 4 Uses of Geothermal Energy 4.1 Near Surface Geothermal Systems 4.2 Deep Geothermal Systems 4.3 Efficiency of Geothermal Systems 4.4 Major Geothermal Fields, High-Enthalpy Fields 4.5 Outlook and Challenges References 5 Potential and Perspectives of Geothermal Energy Utilization References 6 Geothermal Probes 6.1 Planning Principles 6.2 Construction of Ground Source Heat Exchangers 6.3 Dimensioning and Design of Geothermal Probes 6.3.1 Heat Pumps 6.3.2 Thermal Parameters and Computer Programs for the Design of Ground Source Heat Pump Systems 6.4 Drilling Methods for Borehole Heat Exchangers 6.4.1 Rotary Drilling 6.4.2 Down-The-Hole Hammer Method 6.4.3 Concluding Remarks, Technical Drilling Risks 6.5 Backfill and Grouting of Geothermal Probes 6.6 Construction of Deep Geothermal Probes 6.7 Operating Geothermal Probes: Potential Risks, Malfunctions and Damages 6.8 Special Systems and Further Developments 6.8.1 Geothermal Probe Fields 6.8.2 Cooling with Geothermal Probes 6.8.3 Combined Solar Thermal – Geothermal Systems 6.8.4 Geothermal Probe: Performance and Quality Control 6.8.5 Thermosyphon, Heat Pipe: Geothermal Probes Operating with Phase Changes References 7 Geothermal Well Systems 7.1 Building Geothermal Well Systems 7.2 Chemical Aspects of Two-Well Systems 7.3 Thermal Range of Influence, Numerical Models References 8 Hydrothermal Systems, Geothermal Doublets 8.1 Exploration of the Geologic and Tectonic Structure of the Underground 8.2 Thermal and Hydraulic Properties of the Target Aquifer 8.3 Hydraulic and Thermal Range of Hydrothermal Doublets, Numerical Models 8.4 Hydrochemistry of Hot Waters from Great Depth 8.5 Reservoir-Improving Measures, Efficiency-Boosting Measures, Stimulation 8.6 Productivity Risk, Exploration Risk, Economic Efficiency 8.7 Some Site Examples of Hydrothermal Systems 8.8 Project Planning of Hydrothermal Power Systems 8.9 Aquifer Thermal Energy Storage (ATES) References 9 Enhanced-Geothermal-Systems (EGS), Hot-Dry-Rock Systems (HDR), Deep-Heat-Mining (DHM) 9.1 Techniques, Procedures, Strategies, Aims 9.2 Historical Development of the Hydraulic Fracturing Technology, Early HDR Sites 9.3 Stimulation Procedures 9.4 Experience and Coping with Seismicity 9.5 Recommendations, Notes References 10 Geothermal Systems in High-Enthalpy Regions 10.1 Geological Features of High-Enthalpy Regions 10.2 Development, Installation and Initial Commissioning of Power Plants 10.3 Main Types of Power Plants in High-Enthalpy Fields 10.3.1 Dry Steam Power Plant 10.3.2 Flash Steam Power Plants 10.4 Evolving Deficiencies, Potential Countermeasures 10.5 Use of Fluids from Reservoirs at Supercritical Conditions References 11 Environmental Issues Related to Deep Geothermal Systems 11.1 Seismicity Related to EGS projects 11.1.1 Induced Earthquakes 11.1.2 Quantifying Seismic Events 11.1.3 The Basel Incident 11.1.4 The St. Gallen Incident (E Switzerland) 11.1.5 Observed Seismicity at Other EGS Projects 11.1.6 Conclusions and Recommendations Regarding Seismicity Control in Hydrothermal and Petrothermal (EGS) Projects 11.2 Interaction Between Geothermal System Operation and the Underground 11.3 Environmental Issues Related to Surface Installations and Operation References 12 Drilling Techniques for Deep Wellbores References 13 Geophysical Methods, Exploration and Analysis 13.1 Geophysical Pre-drilling Exploration, Seismic Investigations 13.2 Geophysical Well Logging and Data Interpretation References 14 Testing the Hydraulic Properties of the Drilled Formations 14.1 Principles of Hydraulic Well Testing 14.2 Types of Tests, Planning and Implementation, Evaluation Procedures 14.3 Tracer Experiments 14.4 Temperature Evaluation Methods References 15 The Chemical Composition of Deep Geothermal Waters and Its Consequences for Planning and Operating a Geothermal Power Plant 15.1 Sampling and Laboratory Analyses 15.2 Chemical Parameters Characterizing Deep Fluids 15.3 Graphical Representation of Deep Fluid Composition 15.4 Estimating Reservoir Temperature from the Composition of Deep Fluids 15.4.1 The Quartz Thermometer 15.4.2 The K-Na Exchange Thermometer 15.4.3 The Mg–K Thermometer 15.4.4 Other Cation Thermometers 15.4.5 The Ternary Giggenbach Diagram 15.4.6 Multiple Equilibria Models for Equilibrium Temperature 15.5 Origin of Fluids 15.6 Saturation States, Saturation Index 15.7 Mineral Scales and Materials Corrosion References