دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sebastian Alejandro Avalos Sotomayor, Julian M. Ortiz, R. Mohan Srivastava سری: Springer Proceedings in Earth and Environmental Sciences ISBN (شابک) : 3031198441, 9783031198441 ناشر: Springer سال نشر: 2023 تعداد صفحات: 281 [282] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Geostatistics Toronto 2021: Quantitative Geology and Geostatistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمین آمار تورنتو 2021: زمین شناسی کمی و زمین آمار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This open access book provides state-of-the-art theory and application in geostatistics. Geostatistics Toronto 2021 includes 28 short abstracts, 18 extended abstracts, and 7 full articles in the fields of geostatistical theory, multi-point statistics, earth sciences, mining, optimal drilling, domains, seismic, classification uncertainty risk, and artificial intelligence and machine learning. All contributions were presented at the 11th International Geostatistics Congress held in virtually at Toronto, Canada, from July 12-16, 2021. This book is valuable to researchers, scientists, and practitioners in geology, mining, petroleum, geometallurgy, mathematics, and statistics.
Preface Acknowledgements Remembering Dr. Harry M. Parker (1946–2019) Contents Theory A Geostatistical Heterogeneity Metric for Spatial Feature Engineering 1 Introduction 2 Methodology 3 Results and Discussion 4 Case Study 5 Conclusion References Iterative Gaussianisation for Multivariate Transformation 1 Introduction 2 Iterative Multivariate Gaussianisation 3 Nickel Laterite Case Study 3.1 Overview 3.2 Workflow 3.3 Multivariate Transformation and Simulation 3.4 Benchmarking 3.5 Artifacts 4 Conclusions References Comparing and Detecting Stationarity and Dataset Shift 1 Introduction 2 Materials and Methods 3 Results and Discussion 4 Conclusions References Simulation of Stationary Gaussian Random Fields with a Gneiting Spatio-Temporal Covariance 1 Introduction 2 Theoretical Results 3 A Discrete-in-Time and Continuous-in-Space Substitution Algorithm 4 A Fully Continuous Spectral Algorithm 5 Concluding Remarks References Spectral Simulation of Gaussian Vector Random Fields on the Sphere 1 Introduction 2 Mathematical Background 3 Simulation Algorithms 3.1 Random Mixture of Spherical Harmonics (RMSH) 3.2 Random Mixture of Legendre Waves (RMLW) 3.3 Discussion 4 Examples 5 Conclusions References Petroleum Geometric and Geostatistical Modeling of Point Bars 1 Introduction 2 An Overview of Point Bar Geometry 3 Modeling Approach 4 Channel and Point Bar Facies Identification 5 Channel Path Recreation 6 Channel Path Migration 7 Modeling the IHS Geometry 8 Grid Generation 9 Preservation of Point Bar Architecture and Its Internal Heterogeneity 10 Concluding Remarks References Application of Reinforcement Learning for Well Location Optimization 1 Introduction 2 Theory 3 Well Location Problem 4 Case Studies 5 Discussion 6 Conclusion Appendix Neural Network Architecture for Different Case Studies Visualization of Convergence References Compression-Based Modelling Honouring Facies Connectivity in Diverse Geological Systems 1 Introduction 2 Connectivity in Facies Models and Natural Systems 3 Compression-Based Facies Modelling 4 Conclusions References Spatial Uncertainty in Pore Pressure Models at the Brazilian Continental Margin 1 Introduction 2 Theoretical Foundations and Definitions 3 Data Presentation and Interpretation 4 Conclusions 5 Benefits Promoted by This Work References The Suitability of Different Training Images for Producing Low Connectivity, High Net:Gross Pixel-Based MPS Models 1 Introduction 2 Pixel-Based MPS Modelling with Common Training Images 3 Pixel-Based Modelling with Low Connectivity 4 Summary References Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks 1 Introduction 2 MPS Algorithm in Classification Framework 3 Combination of Probabilities References Mining Artifacts in Localised Multivariate Uniform Conditioning: A Case Study 1 Introduction 2 Multivariate Uniform Conditioning and LMUC 3 Case Study Presentation and Results 3.1 Global and Local Scatterplots 3.2 Correlation Between Localised Attributes 4 Conclusions References Methodology for Defining the Optimal Drilling Grid in a Laterite Nickel Deposit Based on a Conditional Simulation 1 Introduction 2 Sequential Gaussian Simulation 3 Sequential Indicator Simulation 4 Optimisation of a Drilling Grid 5 Case Study 5.1 Methodology 5.2 Geostatistical Simulation with Original Database 5.3 Geostatistical Simulation with a Virtual Drilling Grid Database 5.4 Geostatistical Simulation of 100 Realisations of Thickness, Nickel and Ore Type 6 Results and Discussion 7 Conclusions References LSTM-Based Deep Learning Method for Automated Detection of Geophysical Signatures in Mining 1 Introduction 2 Data Used 3 Methodology 3.1 Long Short-Term Memory (LSTM) 3.2 Training and Validation 4 Results and Discussion 5 Conclusion References Earth Science Spatio-Temporal Optimization of Groundwater Monitoring Network at Pickering Nuclear Generating Station 1 Introduction 2 Site and Dataset 2.1 Subsurface Geology 2.2 Groundwater Monitoring 3 Methodology 3.1 Monitoring Objectives 3.2 Decision Criteria 3.3 Sequential Well-Reduction Algorithms 4 Spatial Sampling Optimization 5 Spatiotemporal Sampling Optimization 5.1 Sensitivity Analysis of Temporal Samples 5.2 Sampling Reduction, Considering Previously Sampled Data 6 Conclusion 6.1 Decision Criteria Are Geostatistical 6.2 Spatial Correlation 6.3 Temporal Correlation References Domains Applying Clustering Techniques and Geostatistics to the Definition of Domains for Modelling 1 Introduction 1.1 Machine Learning in Mining 1.2 Stationarity in the Context of Mineral Resource Modeling 1.3 Types of Clustering Algorithms and Background 1.4 Discussions on the Validation Process 1.5 Supervised Learning Applied to the Classification of New Samples 2 Methods and Workflow 2.1 Clustering Algorithms 2.2 Validation Methods 2.3 Automatic Classification of New Samples 2.4 Workflow 3 Case Study 3.1 Exploratory Data Analysis 3.2 Applying Cluster Analysis and Verifying the Results 3.3 Discussions on the Results of the Cluster Analysis 3.4 Supervised Learning Applied to the Automatic Classification of New Samples 4 Conclusions References Addressing Application Challenges with Large-Scale Geological Boundary Modelling 1 Introduction 2 Geology 3 Gaussian Processes 4 A Priori Data 5 Model Building 5.1 Spatial Rotations 5.2 Region Overlap 5.3 Mesh Resolution 5.4 Model Evaluation 6 Unassayed Production Holes 6.1 Results 7 Discussion and Conclusions References Appendix A Appendix: Short Abstracts Theory Petroleum Mining Earth Science Domains Author Index