دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Scott Bateman, Janahan Gnanachandran, Jeff DeMuth سری: ISBN (شابک) : 1804613827, 9781804613825 ناشر: Packt Publishing سال نشر: 2023 تعداد صفحات: 276 زبان: English فرمت فایل : RAR (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Geospatial Data Analytics on AWS: Discover how to manage and analyze geospatial data in the cloud به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل دادههای مکانی در AWS: نحوه مدیریت و تجزیه و تحلیل دادههای مکانی را در فضای ابری کشف کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and Credits Contributors Preface Part 1: Introduction to the Geospatial Data Ecosystem Introduction to Geospatial Data in the Cloud Introduction to cloud computing and AWS Storing geospatial data in the cloud Building your geospatial data strategy Preventing unauthorized access The last mile in data consumption Leveraging your AWS account team Geospatial data management best practices Data – it’s about both quantity and quality People, processes, and technology are equally important Cost management in the cloud Right-sizing, simplified The elephant in the server room Bird’s-eye view on savings Can’t we just add another server? Additional savings at every desk Summary References Quality and Temporal Geospatial Data Concepts Quality impact on geospatial data Transmission methods Streaming data Understanding file formats Normalizing data Considering temporal dimensions Summary References Part 2: Geospatial Data Lakes using Modern Data Architecture Geospatial Data Lake Architecture Modern data architecture overview The AWS modern data architecture pillars Geospatial Data Lake Designing a geospatial data lake using modern data architecture Data collection and ingestion layer Data storage layer Data processing and transformation Data analytics and insights Data visualization and mapping Summary References Using Geospatial Data with Amazon Redshift What is Redshift? Understanding Redshift partitioning Redshift Spectrum Redshift geohashing support Redshift AQUA Redshift geospatial support Launching a Redshift cluster and running a geospatial query Summary References Using Geospatial Data with Amazon Aurora PostgreSQL Lab prerequisites Setting up the database Connecting to the database Installing the PostGIS extension Geospatial data loading Queries and transformations Architectural considerations Summary References Serverless Options for Geospatial What is serverless? Serverless services Object storage and serverless websites with S3 Geospatial applications and S3 web hosting Serverless hosting security and performance considerations Python with Lambda and API Gateway Deploying your first serverless geospatial application Summary References Querying Geospatial Data with Amazon Athena Setting up and configuring Athena Geospatial data formats WKT JSON-encoded geospatial data Spatial query structure Spatial functions AWS service integration Architectural considerations Summary References Part 3: Analyzing and Visualizing Geospatial Data in AWS Geospatial Containers on AWS Understanding containers Scaling containers Container portability GDAL GeoServer Updating containers AWS services Deployment options Deploying containers Summary References Using Geospatial Data with Amazon EMR Introducing Hadoop Introduction to EMR Common Hadoop frameworks EMRFS Geospatial with EMR Launching EMR Summary References Geospatial Data Analysis Using R on AWS Introduction to the R geospatial data analysis ecosystem Setting up R and RStudio on EC2 RStudio on Amazon SageMaker Analyzing and visualizing geospatial data using RStudio Summary References Geospatial Machine Learning with SageMaker AWS ML background AWS service integration Common libraries and algorithms Introducing Geospatial ML with SageMaker Deploying a SageMaker Geospatial example First-time use steps Geospatial data processing Geospatial data visualization Architectural considerations Summary References Using Amazon QuickSight to Visualize Geospatial Data Geospatial visualization background Amazon QuickSight overview Connecting to your data source Configuring Athena Configuring QuickSight Visualization layout Features and controls Point maps Filled maps Putting it all together Reports and collaboration Summary References Part 4: Accessing Open Source and Commercial Platforms and Services Open Data on AWS What is open data? Bird’s-eye view Modern applications The Registry of Open Data on AWS Requester Pays model Analyzing open data Using your AWS account Analyzing multiple data classes Federated queries with Athena Open Data on AWS benefits Summary References Leveraging OpenStreetMapon AWS What is OpenStreetMap? OSM’s data structure OSM benefits Accessing OSM from AWS Application – ski lift scout The OSM community Architectural considerations Summary References Feature Servers and Map Servers on AWS Types of servers and deployment options Capabilities and cloud integrations Deploying a container on AWS with ECR and EC2 Summary Further reading Satellite and Aerial Imagery on AWS Imagery options Sentinel Landsat NAIP Architectural considerations Demonstrating satellite imagery using AWS Summary References Index Other Books You May Enjoy