دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Oleg N. Karpenkov
سری: Algorithms and Computation in Mathematics, 26
ISBN (شابک) : 3662652765, 9783662652763
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 471
[462]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Geometry of Continued Fractions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه کسرهای ادامه یافته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب دید هندسی جدیدی از کسرهای ادامه دار را معرفی می کند. این برنامه چندین کاربرد را برای سؤالات مربوط به حوزه هایی مانند تقریب دیوفانتین، نظریه اعداد جبری و هندسه توریک پوشش می دهد. نسخه دوم اکنون شامل یک رویکرد هندسی به نظریه کاهش گاوس، طبقهبندی چندضلعیهای منتظم اعداد صحیح و برخی موضوعات جدید دیگر است.
بهطور سنتی موضوعی از نظریه اعداد، کسرهای ادامه دار به
صورت دینامیکی ظاهر میشوند. سیستم ها، هندسه جبری، توپولوژی و
حتی مکانیک آسمانی. ظهور هندسه محاسباتی منجر به علاقه مجدد به
تعمیم چند بعدی کسرهای مداوم شده است. قضایای کلاسیک متعددی به
موارد چندبعدی بسط داده شده اند و پدیده های حوزه های مختلف
ریاضیات را روشن می کنند.
خواننده یک مروری بر پیشرفت فعلی در تئوری هندسی کسرهای
چند بعدی ادامه یافته همراه با مسائل باز فعلی. در صورت امکان،
ساختارهای هندسی را با شکل ها و مثال ها نشان می دهیم. هر فصل
دارای تمرینهایی است که برای دورههای کارشناسی یا کارشناسی
ارشد مفید است.
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects.
Traditionally a subject of number theory, continued
fractions appear in dynamical systems, algebraic geometry,
topology, and even celestial mechanics. The rise of
computational geometry has resulted in renewed interest in
multidimensional generalizations of continued fractions.
Numerous classical theorems have been extended to the
multidimensional case, casting light on phenomena in diverse
areas of mathematics.
The reader will find an overview of current progress in
the geometric theory of multidimensional continued fractions
accompanied by currently open problems. Whenever possible, we
illustrate geometric constructions with figures and examples.
Each chapter has exercises useful for undergraduate or
graduate courses.
Preface to the Second Edition Acknowledgements Preface to the First Edition Contents Part I Regular Continued Fractions Chapter 1 Classical Notions and Definitions 1.1 Continued fractions 1.1.1 Definition of a continued fraction 1.1.2 Regular continued fractions for rational numbers 1.1.3 Regular continued fractions and the Euclidean algorithm 1.1.4 Continued fractions with arbitrary elements 1.2 Convergence of infinite regular continued fractions 1.3 Continuants 1.4 Existence and uniqueness of a regular continued fraction for a given real number 1.5 Monotone behavior of convergents 1.6 Approximation rates of regular continued fractions 1.7 Exercises Chapter 2 On Integer Geometry 2.1 Basic notions and definitions 2.1.1 Objects and congruence relation of integer geometry 2.1.2 Invariants of integer geometry 2.1.3 Index of sublattices 2.1.4 Integer length of integer segments 2.1.5 Integer distance to integer lines 2.1.6 Integer area of integer triangles 2.1.7 Index of rational angles 2.1.8 Congruence of rational angles 2.2 Empty triangles: their integer and Euclidean areas 2.3 Integer area of polygons 2.4 Pick’s formula 2.5 Integer-regular polygon 2.6 The twelve-point theorem 2.7 Exercises Chapter 3 Geometry of Regular Continued Fractions 3.1 Classical construction 3.2 Geometric interpretation of the elements of continued fractions 3.3 Index of an angle, duality of sails 3.4 Exercises Chapter 4 Complete Invariant of Integer Angles 4.1 Integer sines of rational angles 4.2 Sails for arbitrary angles and their LLS sequences 4.3 On complete invariants of angles with integer vertex 4.4 Equivalent tails of the angles sharing an edge 4.5 Two algorithms to compute the LLS sequence of an angle 4.5.1 Brute force algorithm 4.5.2 Explicite formulae for LLS sequences via given coordinates of the angle 4.6 Exercises Chapter 5 Integer Trigonometry for Integer Angles 5.1 Definition of trigonometric functions 5.2 Basic properties of integer trigonometry 5.3 Transpose integer angles 5.4 Adjacent integer angles 5.5 LLS sequences for adjacent angles 5.6 Right integer angles 5.7 Opposite interior angles 5.8 Exercises Chapter 6 Integer Angles of Integer Triangles 6.1 Integer sine formula 6.2 On integer congruence criteria for triangles 6.3 On sums of angles in triangles 6.4 Angles and segments of integer triangles 6.5 Examples of integer triangles 6.6 Exercises Chapter 7 Minima of Quadratic Forms, the Markov Spectrum and the Markov-Davenport Characteristics 7.1 Calculation of minima of quadratic forms 7.2 Some properties of Markov spectrum 7.3 Markov numbers 7.4 Markov—Davenport characteristic 7.5 Exercises Chapter 8 Geometric Continued Fractions 8.1 Definition of a geometric continued fraction 8.2 Geometric continued fractions of hyperbolic GL(2,R) matrices 8.3 Duality of sails 8.4 LLS sequences for hyperbolic matrices 8.5 Algebraic sails and their LLS cycles 8.5.1 Algebraic sails 8.5.2 LLS periods and LLS cycles of GL(2,Z) matrices 8.6 Computing LLS cycles of GL(2,Z) matrices 8.6.1 Differences of sequences 8.6.2 LLS cycles for SL(2,Z) matrices with positive eigenvalues 8.6.3 LLS cycles for GL(2,Z) matrices 8.7 Exercises Chapter 9 Continuant Representation of GL(2,Z) Matrices 9.1 Generators of SL(2,Z) and the modular group 9.2 Basic properties of matrices Ma1,...,an 9.3 Matrices of GL(2,Z) in terms of continuants 9.4 An expression of matrices in terms of MS and MT 9.5 Exercises Chapter 10 Semigroup of Reduced Matrices 10.1 Definition and basic properties of reduced matrices 10.1.1 Reduced matrices 10.1.2 Continuant representations of reduced matrices 10.1.3 A necessary and sufficient condition for a matrix to be reduced 10.1.4 LLS cycles of reduced matrices 10.2 Existence of reduced matrices in every integer conjugacy class of GL(2,Z) 10.3 Exercises Chapter 11 Continued Fractions and SL(2,Z) Conjugacy Classes. Elements of Gauss’s Reduction Theory 11.1 Conjugacy classes of GL(2,Z) in general 11.2 Elliptic case 11.3 Parabolic case 11.4 Hyperbolic case 11.4.1 The set of reduced matrices integer conjugate to a given one 11.4.2 Complete invariant of integer conjugacy classes 11.4.3 Algebraicity of matrices with periodic LLS sequences 11.5 Computation of all reduced matrices integer conjugate to a given one 11.5.1 Explicit computation via LLS cycles 11.5.2 Algorithmic computation: Gauss Reduction theory 11.6 Statistical properties of reduced SL(2,Z) matrices 11.6.1 Complexity of reduced matrices 11.6.2 Frequencies of reduced matrices 11.7 Exercises Chapter 12 Lagrange’s Theorem 12.1 The Dirichlet group 12.2 Construction of the integer nth root of a GL(2,Z) matrix 12.3 Pell’s equation 12.4 Periodic continued fractions and quadratic irrationalities 12.5 Exercises Chapter 13 Gauss—Kuzmin Statistics 13.1 Some information from ergodic theory 13.2 The measure space related to continued fractions 13.2.1 Definition of the measure space related to continued fractions 13.2.2 Theorems on density points of measurable subsets 13.3 On the Gauss map 13.3.1 The Gauss map and corresponding invariant measure 13.3.2 An example of an invariant set for the Gauss map 13.3.3 Ergodicity of the Gauss map 13.4 Pointwise Gauss—Kuzmin theorem 13.5 Original Gauss—Kuzmin theorem 13.6 Cross-ratio in projective geometry 13.6.1 Projective linear group 13.6.2 Cross-ratio, infinitesimal cross-ratio 13.7 Smooth manifold of geometric continued fractions 13.8 Möbius measure on the manifolds of continued fractions 13.9 Explicit formulas for the Möbius form 13.10 Relative frequencies of edges of one-dimensional continued fractions 13.11 Exercises Chapter 14 Geometric Aspects of Approximation 14.1 Two types of best approximations of rational numbers 14.1.1 Best Diophantine approximations 14.1.2 Strong best Diophantine approximations 14.2 Rational approximations of arrangements of two lines 14.2.1 Regular angles and related Markov—Davenport forms 14.2.2 Integer arrangements and their sizes 14.2.3 Discrepancy functional and approximation model 14.2.4 Lagrange estimates for the case of continued fractions with bounded elements 14.2.5 Periodic sails and best approximations in the algebraic case 14.2.6 Finding best approximations of line arrangements 14.3 Exercises Chapter 15 Geometry of Continued Fractions with Real Elements and Kepler’s Second Law 15.1 Continued fractions with integer coefficients 15.2 Continued fractions with real coefficients 15.2.1 Broken lines related to sequences of arbitrary real numbers 15.2.2 Continued fractions related to broken lines 15.2.3 Geometry of continued fractions for broken lines 15.2.4 Proof of Theorem 4.16 15.3 Areal and angular densities for differentiable curves 15.3.1 Notions of real and angular densities 15.3.2 Curves and broken lines 15.3.3 Some examples 15.4 Exercises Chapter 16 Extended Integer Angles and Their Summation 16.1 Extension of integer angles. Notion of sums of integer angles 16.1.1 Extended integer angles and revolution number 16.1.2 On normal forms of extended angles 16.1.3 Trigonometry of extended angles. Associated integer angles 16.1.4 Opposite extended angles 16.1.5 Sums of extended angles 16.1.6 Sums of integer angles 16.2 Relations between extended and integer angles 16.3 Proof of Theorem 6.9(i) 16.3.1 Two preliminary lemmas 16.3.2 Conclusion of the proof of Theorem 6.9(i) 16.4 Exercises Chapter 17 Integer Angles of Polygons and Global Relations for Toric Singularities 17.1 Theorem on angles of integer convex polygons 17.2 Toric surfaces and their singularities 17.2.1 Definition of toric surfaces 17.2.2 Singularities of toric surfaces 17.3 Relations on toric singularities of surfaces 17.3.1 Toric singularities of n-gons with fixed parameter n 17.3.2 Realizability of a prescribed set of toric singularities 17.4 Exercises Part II Multidimensional Continued Fractions Chapter 18 Basic Notions and Definitions of Multidimensional Integer Geometry 18.1 Basic integer invariants in integer geometry 18.1.1 Objects and the congruence relation 18.1.2 Integer invariants and indices of sublattices 18.1.3 Integer volume of simplices 18.1.4 Integer angle between two planes 18.1.5 Integer distance between two disjoint planes 18.2 Integer and Euclidean volumes of basis simplices 18.3 Integer volumes of polyhedra 18.3.1 Interpretation of integer volumes of simplices via Euclidean volumes 18.3.2 Integer volume of polyhedra 18.3.3 Decomposition into empty simplices 18.4 Lattice Plücker coordinates and calculation of integer volumes of simplices 18.4.1 Grassmann algebra on R^n and k-forms 18.4.2 Plücker coordinates 18.4.3 Oriented lattices in R^n and their lattice Plücker embedding 18.4.4 Lattice Plücker coordinates and integer volumes of simplices 18.5 Ehrhart polynomials as generalized Pick’s formula 18.6 Integer-regular polyhedra 18.6.1 Definition of integer-regular polyhedra 18.6.2 Schläfli symbols 18.6.3 Euclidean regular polyhedra 18.6.4 Preliminary integer notation 18.6.5 Integer-regular polyhedra in arbitrary dimensions 18.7 Exercises Chapter 19 On Empty Simplices, Pyramids, Parallelepipeds 19.1 Classification of empty integer tetrahedra 19.2 Classification of completely empty lattice pyramids 19.3 Two open problems related to the notion of emptiness 19.3.1 Problem on empty simplices 19.3.2 Lonely runner conjecture 19.4 Proof of White’s theorem and the empty tetrahedra classification theorems 19.4.1 IDC-system 19.4.2 A lemma on sections of an integer parallelepiped 19.4.3 A corollary on integer distances between the vertices and the opposite faces of a tetrahedron with empty faces 19.4.4 Lemma on one integer node 19.4.5 Proof of White’s theorem 19.4.6 Deduction of Corollary 19.3 from White’s theorem 19.5 Exercises Chapter 20 Multidimensional Continued Fractions in the Sense of Klein 20.1 Background 20.2 Some notation and definitions 20.2.1 A-hulls and their boundaries 20.2.2 Definition of multidimensional continued fraction in the sense of Klein 20.2.3 Face structure of sails 20.3 Finite continued fractions 20.4 On a generalized Kronecker’s approximation theorem 20.4.1 Addition of sets in R^n 20.4.2 Integer approximation spaces and affine irrational vectors 20.4.3 Formulation of the theorem 20.4.4 Proof of the Multidimensional Kronecker’s approximation theorem 20.5 Polyhedral structure of sails 20.5.1 The intersection of the closures of A-hulls with faces of corresponding cones 20.5.2 Homeomorphic types of sails 20.5.3 Combinatorial structure of sails for cones in general position 20.5.4 A-hulls and quasipolyhedra 20.6 Two-dimensional faces of sails 20.6.1 Faces with integer distance to the origin equal one 20.6.2 Faces with integer distance to the origin greater than one 20.7 Exercises Chapter 21 Dirichlet Groups and Lattice Reduction 21.1 Orders, units, and Dirichlet’s Unit Theorem 21.2 Dirichlet groups and groups of units in orders 21.2.1 Notion of a Dirichlet group 21.2.2 On isomorphisms of Dirichlet groups and certain groups of units 21.2.3 Dirichlet groups related to orders that do not have complex roots of unity 21.3 Calculation of a basis of the additive group Γ (A) 21.3.1 Step 1: preliminary statements 21.3.2 Step 2: application of the LLL-algorithm 21.3.3 Step 3: calculation of an integer basis having a basis of an integer sublattice 21.4 Calculation of a basis of the positive Dirichlet group Ξ+(A) 21.5 Lattice reduction and the LLL-algorithm 21.5.1 Reduced bases 21.5.2 The LLL-algorithm 21.6 Exercises Chapter 22 Periodicity of Klein polyhedra. Generalization of Lagrange’s Theorem 22.1 Continued fractions associated to matrices 22.2 Algebraic periodic multidimensional continued fractions 22.3 Torus decompositions of periodic sails in R^3 22.4 Three single examples of torus decompositions in R^3 22.5 Examples of infinite series of torus decomposition 22.6 Two-dimensional continued fractions associated to transpose Frobenius normal forms 22.7 Some problems and conjectures on periodic geometry of algebraic sails 22.8 Generalized Lagrange’s Theorem 22.9 Littlewood and Oppenheim conjectures in the framework of multidimensional continued fractions 22.10 Exercises Chapter 23 Multidimensional Gauss—Kuzmin Statistics 23.1 Möbius measure on the manifold of continued fractions 23.1.1 Smooth manifold of n-dimensional continued fractions 23.1.2 Möbius measure on the manifolds of continued fractions 23.2 Explicit formulae for the Möbius form 23.3 Relative frequencies of faces of multidimensional continued fractions 23.4 Some calculations of frequencies for faces in the two-dimensional case 23.4.1 Some hints for computation of approximate values of relative frequencies 23.4.2 Numeric calculations of relative frequencies 23.4.3 Two particular results on relative frequencies 23.5 Exercises Chapter 24 On the Construction of Multidimensional Continued Fractions 24.1 Inductive algorithm 24.1.1 Some background 24.1.2 Description of the algorithm 24.1.3 Step 1a: construction of the first hyperface 24.1.4 Step 1b, 4: how decompose the polytope into its faces 24.1.5 Step 2: construction of the adjacent hyperface 24.1.6 Step 2: test of the equivalence class for the hyperface F′ to have representatives in the set of hyperfaces D 24.2 Deductive algorithms to construct sails 24.2.1 General idea of deductive algorithms 24.2.2 The first deductive algorithm 24.2.3 The second deductive algorithm 24.2.4 Test of the conjectures produced in the two-dimensional case 24.2.5 On the verification of a conjecture for the multidimensional case 24.3 An example of the calculation of a fundamental domain 24.4 Exercises Chapter 25 Gauss Reduction in Higher Dimensions 25.1 Organization of this chapter 25.2 Hessenberg matrices and conjugacy classes 25.2.1 Notions and definitions 25.2.2 Construction of perfect Hessenberg matrices conjugate to a given one 25.2.3 Existence and finiteness of ς -reduced Hessenberg matrices 25.2.4 Families of Hessenberg matrices with given Hessenberg type 25.2.5 ς-reduced matrices in the 2-dimensional case 25.3 Complete geometric invariant of conjugacy classes 25.3.1 Continued fractions in the sense of Klein—Voronoi 25.3.2 Geometric complete invariants of Dirichlet groups 25.3.3 Geometric invariants of conjugacy classes 25.4 Algorithmic aspects of reduction to ς-reduced matrices 25.4.1 Markov—Davenport characteristics 25.4.2 Klein—Voronoi continued fractions and minima of MD-characteristics 25.4.3 Construction of ς-reduced matrices by Klein—Voronoi continued fractions 25.5 Diophantine equations related to the Markov—Davenport characteristic 25.5.1 Multidimensional w-sails and w-continued fractions 25.5.2 Solution of Equation 25.1 25.6 On reduced matrices in SL(3,Z) with two complexconjugate eigenvalues 25.6.1 Perfect Hessenberg matrices of a given Hessenberg type 25.6.2 Parabolic structure of the set of NRS-matrices 25.6.3 Theorem on asymptotic uniqueness of ς-reduced NRS-matrices 25.6.4 Examples of NRS-matrices for a given Hessenberg type 25.6.5 Proof of Theorem 25.43 25.6.6 Proof of Theorem 25.48 25.7 Open problems 25.8 Exercises Chapter 26 Approximation of Maximal Commutative Subgroups 26.1 Rational approximations of MCRS-groups 26.1.1 Maximal commutative subgroups and corresponding simplicial cones 26.1.2 Regular subgroups and Markov—Davenport forms 26.1.3 Rational subgroups and their sizes 26.1.4 Discrepancy functional 26.1.5 Approximation model 26.1.6 Diophantine approximation and MCRS-group approximation 26.2 Simultaneous approximation in R3 and MCRS-group approximation 26.2.1 General construction 26.2.2 A ray of a nonreal spectrum operator 26.2.3 Two-dimensional golden ratio 26.3 Exercises Chapter 27 Other Generalizations of Continued Fractions 27.1 Relative minima 27.1.1 Relative minima and the Minkowski—Voronoi complex 27.1.2 Minkowski—Voronoi tessellations of the plane 27.1.3 Minkowski—Voronoi continued fractions in R^3 27.1.4 Combinatorial properties of the Minkowski—Voronoi tessellation for integer sublattices 27.2 Farey addition, Farey tessellation, triangle sequences 27.2.1 Farey addition of rational numbers 27.2.2 Farey tessellation 27.2.3 Descent toward the absolute 27.2.4 Triangle sequences 27.3 Decompositions of coordinate rectangular bricks and O’Hara’s algorithm 27.3.1 Π-congruence of coordinate rectangular bricks 27.3.2 Criteron of Π-congruence of coordinate bricks 27.3.3 Geometric version of O’Hara’s algorithm for partitions 27.4 Algorithmic generalized continued fractions 27.4.1 General algorithmic scheme 27.4.2 Examples of algorithms 27.4.3 Algebraic periodicity 27.4.4 A few words about convergents 27.5 Branching continued fractions 27.6 Continued fractions and rational knots and links 27.6.1 Necessary definitions 27.6.2 Rational tangles and operations on them 27.6.3 Main results on rational knots and tangles References Index