ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Geometry and Invariance in Stochastic Dynamics: Verona, Italy, March 25-29, 2019

دانلود کتاب هندسه و تغییر ناپذیری در دینامیک تصادفی: ورونا، ایتالیا، 25-29 مارس 2019

Geometry and Invariance in Stochastic Dynamics: Verona, Italy, March 25-29, 2019

مشخصات کتاب

Geometry and Invariance in Stochastic Dynamics: Verona, Italy, March 25-29, 2019

ویرایش:  
نویسندگان: , , , ,   
سری: Springer Proceedings in Mathematics & Statistics, 378 
ISBN (شابک) : 3030874311, 9783030874315 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 272
[273] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Geometry and Invariance in Stochastic Dynamics: Verona, Italy, March 25-29, 2019 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هندسه و تغییر ناپذیری در دینامیک تصادفی: ورونا، ایتالیا، 25-29 مارس 2019 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هندسه و تغییر ناپذیری در دینامیک تصادفی: ورونا، ایتالیا، 25-29 مارس 2019



این کتاب از کنفرانس تحولات تصادفی و تغییر ناپذیری در دینامیک تصادفی که از 25 تا 28 مارس 2019 در ورونا به افتخار سرجیو آلبریو برگزار شد، پدید آمد. این حوزه جدید مطالعات مربوط به خصوصیات تغییرپذیری و تقارن معادلات دیفرانسیل تصادفی با ابعاد محدود و نامتناهی را ارائه می‌کند. ثابت شده است که تغییر ناپذیری چنین معادلات کلاسیک از نظر تاریخی هم برای مطالعات نظری و هم برای مطالعات عددی بسیار مهم بوده و کاربردهای مهمی را به دنبال داشته است.

هدف کتاب حاضر این است که برای ارائه وضعیت هنر مطالعات در مورد سیستم های تصادفی از این دیدگاه، ارائه برخی از ایده ها و روش های اساسی اساسی درگیر، و ترسیم خطوط اصلی برای پیشرفت های آینده. تمرکز اصلی بر پر کردن شکاف بین رویکردهای قطعی و تصادفی است، با هدف کمک به بسط یک نظریه یکپارچه که هم از دیدگاه نظری و هم از دیدگاه کاربردها تأثیر زیادی خواهد داشت.

خواننده یک ریاضیدان یا یک فیزیکدان نظری است. رشته اصلی آنالیز تصادفی با ایده های عمیق از فیزیک ریاضی و هندسه گروه دروغ است. در حالی که مخاطب اساساً از دانشگاهیان تشکیل می شود، خواننده همچنین می تواند یک پزشک با مدرک دکترا باشد که به مدل سازی تصادفی کارآمد علاقه مند است.


توضیحاتی درمورد کتاب به خارجی

This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications.

The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications.                                                                                                       

The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.



فهرست مطالب

Preface
Random Transformations and Invariance in Stochastic Dynamics
Contents
Some Recent Developments on Lie Symmetry Analysis of Stochastic Differential Equations
	1 Introduction
	2 Symmetries of SDEs Driven by Brownian Motion
		2.1 Strong Symmetries
		2.2 Weak Symmetries
		2.3 Extended Symmetries
	3 Symmetries of SDEs Driven by Discrete Time processes
		3.1 Gauge Symmetries
		3.2 Weak Symmetries of Discrete Time SDEs
	4 Applications
		4.1 Reduction and Reconstruction of Symmetric SDEs
		4.2 Symmetries of SDEs and Symmetries of Corresponding Kolmogorov equations
		4.3 Weak Symmetries of Numerical Schemes for SDEs
	5 Other Results on the Lie Symmetry Analysis of Stochastic Systems
		5.1 Random Symmetries
		5.2 Variational SDEs and Noether Theorem
		5.3 Finite Dimensional Reduction of SPDEs
	References
Markov Processes with Jumps on Manifolds and Lie Groups
	1 Introduction
	2 Markov and Feller Processes
	3 Stochastic Differential Equations on Manifolds
	4 The Positive Maximum Principle and Courrège Theory
		4.1 The Courrège Theorem on Euclidean Space and Manifolds
		4.2 The Courrège Theorem on Lie Groups
	5 Invariant Markov Processes
	6 Inhomogeneous Lévy Processes
	7 Decomposition of Invariant Markov Processes
	References
Asymptotic Expansion for a Black–Scholes Model with Small Noise Stochastic Jump-Diffusion Interest Rate
	1 Introduction
	2 The Asymptotic Expansion
		2.1 The General Setting
		2.2 The Asymptotic Character of the Expansion of the Solution Xεt of the SDE in Powers of ε
	3 The Black–Scholes Model with Stochastic Interest Rate
	4 Conclusions
	References
Stochastic Geodesics
	1 Introduction
	2 Geodesics on Riemannian Manifolds
	3 The Frame Bundle and the Laplacians
	4 Stochastic Analysis on Manifolds
	5 Stochastic Geodesics
	6 Stochastic Geodesics on Lie Groups
	7 Relation with Stochastic Forward-Backward Differential Equations
	References
A Note on Supersymmetry and Stochastic Differential Equations
	1 Introduction
	2 Super-Geometry and Gaussian Super-Fields
		2.1 Some Notions of Super-Geometry
		2.2 Construction of the Super-Field
		2.3 Relation with SDEs
	3 Supersymmetry and the Supersymmetric Field
		3.1 The Supersymmetry
		3.2 Localization of Supersymmetric Averages
	References
Quasi-shuffle Algebras in Non-commutative Stochastic Calculus
	1 Introduction
	2 Karandikar's Axioms and Quasi-shuffle Algebras
		2.1 Itô Calculus for Semimartingales
		2.2 Singular Quasi-shuffle Algebras and Stratonovich Calculus
		2.3 Shuffle Algebra and Continuous Semimartingales
	3 Chronological Calculus for Stochastic Integration
		3.1 Chronological Calculus and Pre-Lie Algebra
		3.2 Chronological Itô Calculus
	References
Higher Order Derivatives of Heat Semigroups on Spheres and Riemannian Symmetric Spaces
	1 Introduction
	2 Brownian Motion on Spheres as Symmetric Spaces
		2.1 The Sphere as a Symmetric Space
		2.2 Derivatives of the Heat Semigroup
		2.3 Higher Derivatives of Ptf
	3 Decomposition and Conditioning of TξtTξt
		3.1 Decomposition of the Flow
		3.2 Expectations of Representations of Random Matrices: An Elementary Lemma
		3.3 Calculation for Sn
	4 Main Result for Sn
		4.1 Two Alternative Approaches
	5 Extensions
		5.1 Higher Order Derivatives
		5.2 More General Diffusion Semi-groups
		5.3 Questions
	References
Rough Homogenisation with Fractional Dynamics
	1 Introduction
		1.1 Main Results
	2 Homogenization via Rough Continuity
		2.1 CLT for Stationary Processes
		2.2 Fractional Ornstein Uhlenbeck as Fast Dynamics
		2.3 The Rough Path Topology
		2.4 Homogenization via Rough Continuity
		2.5 Examples Satisfying Assumption 2.7
	3 Recent Progress on Slow/Fast Markovian Dynamics
		3.1 The Basic Averaging Principal
		3.2 Quantitative Locally Uniform LLN
		3.3 Averaging with Hörmander's Conditions
		3.4 Diffusion Homogenisation Theory
	4 Appendix
	References
Stochastic Geometric Mechanics with Diffeomorphisms
	1 Noether's Theorem in Geometric Mechanics
		1.1 Euler-Poincaré Reduction
		1.2 Sobolev Class Diffeomorphisms
		1.3 Stochastic Advection by Lie Transport (SALT)
		1.4 Semidirect Product Group Adjoint and Coadjoint Actions
	2 Deterministic Geometric Fluid Dynamics
	3 Stochastic Geometric Fluid Dynamics
	References
McKean Feynman-Kac Probabilistic Representations of Non-linear Partial Differential Equations
	1 Introduction and Motivations
		1.1 General Considerations
		1.2 Some Motivating Examples
		1.3 Structure of the Paper
	2 McKean Representations of Non-linear Fokker-Planck Equations
		2.1 Probabilistic Representation of Linear Fokker-Planck Equations
		2.2 McKean Probabilistic Representation of Non-linear Fokker-Planck Equation
	3 McKean Feynman-Kac Representations for Non-conservative and Non-linear PDEs
	4 McKean Representation of a Fokker-Planck Equation with Terminal Condition
	5 Probabilistic Representation with Jumps for Non-conservative PDEs
	6 McKean SDEs in Random Environment
		6.1 The (S)PDE and the Basic Idea
		6.2 Well-Posedness of the SPDE
		6.3 McKean Equation in Random Environment
	7 McKean Representation of Stochastic Control Problems
		7.1 Stochastic Control Problems and Non-linear Partial Differential Equations
		7.2 McKean Type Representation in a Toy Control Problem Example
	References
Bernstein Processes, Isovectors and Mechanics
	1 Introduction
	2 Summary
	3 A Summary of Schrödinger's Problem and Its Solution
	4 The Method of Isovectors
		4.1 Examples
	5 Bernstein Processes
	6 Parametrization of a One-Factor Affine Model in Stochastic Finance
	7 Generalized Brownian Bridges
	8 Conclusion
	References
On the Positivity of Local Mild Solutions to Stochastic Evolution Equations
	1 Introduction
	2 Assumptions and Main Result
	3 Auxiliary Results
	4 Proof of Theorem 2.2
		4.1 Approximation of the solution
		4.2 Positivity
	5 Positivity of Forward Rates
	References
Invariance of Poisson Point Processes by Moment Identities with Statistical Applications
	1 Introduction
	2 Moments of Poisson Point Processes
	3 Slivnyak-Mecke Identity
	4 Nonlinear Slivnyak-Mecke Identities
	5 Random Sets in Stochastic Geometry
	6 Multiparameter Integrals in Random Graphs
	7 Random-Connection Model
	8 Moments of Poisson Shot Noise Processes
	9 Computation of Joint Moments
	10 Gram-Charlier Expansions
	References




نظرات کاربران