دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Tushar Das, David Simmons, Mariusz Urbanski سری: ISBN (شابک) : 1470434652, 9781470434656 ناشر: American Mathematical Society سال نشر: 2017 تعداد صفحات: 321 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Geometry and Dynamics in Gromov Hyperbolic Metric Spaces: With an Emphasis on Non-proper Settings (Mathematical Surveys and Monographs) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه و دینامیک در فضاهای متریک هذلولی گروموف: با تاکید بر تنظیمات نامناسب (نظرسنجی ها و تک نگاری های ریاضی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title page Dedication Contents List of Figures Prologue Chapter 1. Introduction and Overview 1.1. Preliminaries 1.1.1. Algebraic hyperbolic spaces 1.1.2. Gromov hyperbolic metric spaces 1.1.3. Discreteness 1.1.4. The classification of semigroups 1.1.5. Limit sets 1.2. The Bishop–Jones theorem and its generalization 1.2.1. The modified Poincaré exponent 1.3. Examples 1.3.1. Schottky products 1.3.2. Parabolic groups 1.3.3. Geometrically finite and convex-cobounded groups 1.3.4. Counterexamples 1.3.5. \\R-trees and their isometry groups 1.4. Patterson–Sullivan theory 1.4.1. Quasiconformal measures of geometrically finite groups 1.5. Appendices Part 1 . Preliminaries Chapter 2. Algebraic hyperbolic spaces 2.1. The definition 2.2. The hyperboloid model 2.3. Isometries of algebraic hyperbolic spaces 2.4. Totally geodesic subsets of algebraic hyperbolic spaces 2.5. Other models of hyperbolic geometry 2.5.1. The (Klein) ball model 2.5.2. The half-space model 2.5.3. Transitivity of the action of \\Isom() on ∂˝ Chapter 3. \\R-trees, CAT(-1) spaces, and Gromov hyperbolic metric spaces 3.1. Graphs and \\R-trees 3.2. CAT(-1) spaces 3.2.1. Examples of CAT(-1) spaces 3.3. Gromov hyperbolic metric spaces 3.3.1. Examples of Gromov hyperbolic metric spaces 3.4. The boundary of a hyperbolic metric space 3.4.1. Extending the Gromov product to the boundary 3.4.2. A topology on \\bord???? 3.5. The Gromov product in algebraic hyperbolic spaces 3.5.1. The Gromov boundary of an algebraic hyperbolic space 3.6. Metrics and metametrics on \\bord???? 3.6.1. General theory of metametrics 3.6.2. The visual metametric based at a point \\notzero∈???? 3.6.3. The extended visual metric on \\bord???? 3.6.4. The visual metametric based at a point ????∈\\del???? Chapter 4. More about the geometry of hyperbolic metric spaces 4.1. Gromov triples 4.2. Derivatives 4.2.1. Derivatives of metametrics 4.2.2. Derivatives of maps 4.2.3. The dynamical derivative 4.3. The Rips condition 4.4. Geodesics in CAT(-1) spaces 4.5. The geometry of shadows 4.5.1. Shadows in regularly geodesic hyperbolic metric spaces 4.5.2. Shadows in hyperbolic metric spaces 4.6. Generalized polar coordinates Chapter 5. Discreteness 5.1. Topologies on \\Isom(????) 5.2. Discrete groups of isometries 5.2.1. Topological discreteness 5.2.2. Equivalence in finite dimensions 5.2.3. Proper discontinuity 5.2.4. Behavior with respect to restrictions 5.2.5. Countability of discrete groups Chapter 6. Classification of isometries and semigroups 6.1. Classification of isometries 6.1.1. More on loxodromic isometries 6.1.2. The story for real hyperbolic spaces 6.2. Classification of semigroups 6.2.1. Elliptic semigroups 6.2.2. Parabolic semigroups 6.2.3. Loxodromic semigroups 6.3. Proof of the Classification Theorem 6.4. Discreteness and focal groups Chapter 7. Limit sets 7.1. Modes of convergence to the boundary 7.2. Limit sets 7.3. Cardinality of the limit set 7.4. Minimality of the limit set 7.5. Convex hulls 7.6. Semigroups which act irreducibly on algebraic hyperbolic spaces 7.7. Semigroups of compact type Part 2 . The Bishop–Jones theorem Chapter 8. The modified Poincaré exponent 8.1. The Poincaré exponent of a semigroup 8.2. The modified Poincaré exponent of a semigroup Chapter 9. Generalization of the Bishop–Jones theorem 9.1. Partition structures 9.2. A partition structure on \\del???? 9.3. Sufficient conditions for Poincaré regularity Part 3 . Examples Chapter 10. Schottky products 10.1. Free products 10.2. Schottky products 10.3. Strongly separated Schottky products 10.4. A partition-structure–like structure 10.5. Existence of Schottky products Chapter 11. Parabolic groups 11.1. Examples of parabolic groups acting on \\E^{∞} 11.1.1. The Haagerup property and the absence of a Margulis lemma 11.1.2. Edelstein examples 11.2. The Poincaré exponent of a finitely generated parabolic group 11.2.1. Nilpotent and virtually nilpotent groups 11.2.2. A universal lower bound on the Poincaré exponent 11.2.3. Examples with explicit Poincaré exponents Chapter 12. Geometrically finite and convex-cobounded groups 12.1. Some geometric shapes 12.1.1. Horoballs 12.1.2. Dirichlet domains 12.2. Cobounded and convex-cobounded groups 12.2.1. Characterizations of convex-coboundedness 12.2.2. Consequences of convex-coboundedness 12.3. Bounded parabolic points 12.4. Geometrically finite groups 12.4.1. Characterizations of geometrical finiteness 12.4.2. Consequences of geometrical finiteness 12.4.3. Examples of geometrically finite groups Chapter 13. Counterexamples 13.1. Embedding \\R-trees into real hyperbolic spaces 13.2. Strongly discrete groups with infinite Poincaré exponent 13.3. Moderately discrete groups which are not strongly discrete 13.4. Poincaré irregular groups 13.5. Miscellaneous counterexamples Chapter 14. \\R-trees and their isometry groups 14.1. Construction of \\R-trees by the cone method 14.2. Graphs with contractible cycles 14.3. The nearest-neighbor projection onto a convex set 14.4. Constructing \\R-trees by the stapling method 14.5. Examples of \\R-trees constructed using the stapling method Part 4 . Patterson–Sullivan theory Chapter 15. Conformal and quasiconformal measures 15.1. The definition 15.2. Conformal measures 15.3. Ergodic decomposition 15.4. Quasiconformal measures 15.4.1. Pointmass quasiconformal measures 15.4.2. Non-pointmass quasiconformal measures Chapter 16. Patterson–Sullivan theorem for groups of divergence type 16.1. Samuel–Smirnov compactifications 16.2. Extending the geometric functions to \\what???? 16.3. Quasiconformal measures on \\what???? 16.4. The main argument 16.5. End of the argument 16.6. Necessity of the generalized divergence type assumption 16.7. Orbital counting functions of nonelementary groups Chapter 17. Quasiconformal measures of geometrically finite groups 17.1. Sufficient conditions for divergence type 17.2. The global measure formula 17.3. Proof of the global measure formula 17.4. Groups for which ???? is doubling 17.5. Exact dimensionality of ???? 17.5.1. Diophantine approximation on Λ 17.5.2. Examples and non-examples of exact dimensional measures Appendix A. Open problems Appendix B. Index of defined terms Bibliography Back Cover