دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ricardo H Nochetto, Andrea Bonito سری: ISBN (شابک) : 0444640037, 9780444640031 ناشر: North Holland سال نشر: 2020 تعداد صفحات: 693 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Geometric Partial Differential Equations - Part I به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل جزئی هندسی - قسمت اول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
معادلات دیفرانسیل جزئی هندسی (PDEs) علاوه بر علاقه ریاضی ذاتی خود، در بسیاری از کاربردهای علمی، مهندسی و صنعتی در همه جا حاضر هستند. آنها نشان دهنده یک چالش فکری هستند و اخیراً مورد توجه زیادی قرار گرفته اند. هدف از این جلد ارائه یک مرجع مفقود متشکل از ارائه های مستقل و جامع است. این شامل ایده های اساسی، تجزیه و تحلیل و کاربردهای الگوریتم های بنیادی پیشرفته برای تقریب PDE های هندسی همراه با تأثیرات آنها در زمینه های مختلف در ریاضیات، علوم و مهندسی است.
Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering.
Copyright Contributors Preface Acknowledgements Finite element methods for the Laplace-Beltrami operator Introduction Calculus on surfaces Parametric surfaces Differential operators Signed distance function Curvatures Surface regularity and properties of the distance function Divergence theorem on surfaces Perturbation theory Perturbation theory for C1,α surfaces Perturbation theory for C2 surfaces H2 extensions from C2 surfaces Regularization Parametric finite element method FEM on Lipschitz parametric surfaces Lipschitz parametric surfaces Differential geometry on polyhedral surfaces Parametric finite element method Geometric consistency Uniform Poincaré-Friedrichs estimate on Γ Geometric estimators Geometric consistency error for C1,α surfaces Geometric consistency error for C2 surfaces A priori error analysis A priori error estimates for C2 surfaces A priori error estimates for C1,α surfaces A posteriori error analysis Trace method Preliminaries Bulk and surface meshes Geometric assumptions Level set representations Harmonic extension and traces A priori error estimates Geometric resolution and extensions Approximation properties of trace finite element space A posteriori error estimates Assumptions on surface representation Notation and surface resolution assumptions Extension for a posteriori error estimates Preliminary results A posteriori upper bound Narrow band method The narrow band FEM PDE geometric consistency Properties of the narrow band FEM A priori error estimates Acknowledgements References The Monge-Ampère equation Introduction Geometric applications Gauss curvature problem Reflector design problem Affine plateau problem Optimal mass transport problem Solution concepts for the Monge-Ampère equation Classical solutions Viscosity solutions Alexandrov solutions Wide stencil finite differences A general framework for approximation schemes A variational characterization of the determinant Wide stencil finite difference schemes Filtered schemes Lattice basis reduction scheme Discretization based on power diagrams Two scale methods Discrete convexity A comparison principle Consistency and discrete barriers Convergence Rates of convergence Extensions, generalizations, and applications Hamilton Jacobi Bellman formulation and semi-Lagrangian schemes Filtered two scale schemes Approximation of convex envelopes The Gauss curvature problem Transport boundary conditions Discretizations based on geometric considerations Description of the scheme Nodal set and domain partition Nodal functions, their subdifferentials, and convex envelopes The Oliker-Prussner method Stability, continuous dependence on data, and discrete maximum principle Consistency Pointwise error estimate W2,p error estimate Finite Element Methods Continuous finite element methods Mixed formulations Galerkin methods for singular solutions Convergence of interior discretizations Numerical examples Example 1: Smooth solution Example 2: Nonclassical solution Example 3: Lipschitz and degenerate solution Concluding remarks Acknowledgements References Finite element simulation of nonlinear bending models for thin elastic rods and plates Introduction Bending of elastic rods Elastic plates Outline of the article Notation Formal dimension reductions Elastic rods Elastic plates Convergent finite element discretizations Elastic rods Elastic plates Iterative solution via constrained gradient flows Elastic rods Elastic plates Linear finite element systems with nodal constraints Application to harmonic maps Applications, modifications, and extensions Bilayer plates Self-avoiding curves and elastic knots Föppl-von Kármán model Conclusions Acknowledgements References Parametric finite element approximations of curvature-driven interface evolutions Introduction Geometry of surfaces Surfaces in Rd Curvature The divergence theorem Evolving surfaces and transport theorems Time derivatives of the normal Time derivatives of the mean curvature Gauss-Bonnet theorem Parametric finite elements Polyhedral surfaces Orientation Polygonal curves Stability estimates Curvature approximations Evolving polyhedral surfaces and transport theorems Further results for evolving polyhedral surfaces Mean curvature flow Weak formulation Finite element approximation Discrete linear systems Curves in the plane Existence and uniqueness Stability Equipartition property Alternative parametric methods The classical Dziuk approach The convergent finite element algorithm of Kovács, Li, Lubich Alternative numerical methods that equidistribute Using the DeTurck trick to obtain good mesh properties Other numerical approaches Surface diffusion and other flows Properties of the surface diffusion flow Finite element approximation for surface diffusion Volume conservation for the semidiscrete scheme Generalizations to other flows Approximations with reduced or induced tangential motion Alternative parametric methods Anisotropic flows Derivation of the governing equations Suitable weak formulations Finite element approximation Solution method and discrete systems Volume conservation for semidiscrete schemes Alternative numerical approaches Coupling bulk equations to geometric equations on the surface and applications to crystal growth The Mullins-Sekerka problem Weak formulation of the Mullins-Sekerka problem An unfitted finite element approximation of the Mullins-Sekerka problem The Stefan problem with a (kinetic) Gibbs-Thomson law One-sided free boundary problems Alternative numerical approaches Two-phase flow Two-phase Stokes flow Finite element approximation Semidiscrete finite element approximation XFEMΓ for conservation of the phase volumes Approximations based on the fluidic tangential velocity Two-phase Navier-Stokes flow Alternative numerical approaches Willmore flow Derivation of the flow A finite element approximation of Willmore flow A stable approximation of Willmore flow Willmore flow with spontaneous curvature and area difference elasticity effects Alternative numerical approaches Biomembranes A model for the dynamics of fluidic biomembranes A weak formulation for the dynamics of biomembranes Semidiscrete finite element approximation Two-phase biomembranes Alternative numerical approaches Acknowledgement References The phase field method for geometric moving interfaces and their numerical approximations Introduction Mathematical foundation of the phase field method Geometric surface evolution Examples of geometric surface evolution Mathematical formulations and methodologies Level set and phase field formulations of the MCF Phase field formulations of other moving interface problems Relationships between phase field and other formulations Phase function representations of geometric quantities Convergence of the phase field formulation Time-stepping schemes for phase field models Classical schemes Convex splitting and stabilized schemes Schemes using Lagrangian multipliers Further considerations Spatial discretization methods for phase field models Spatial finite difference discretization Spatial Galerkin discretizations Galerkin discretization via finite element methods Galerkin discretization via spectral methods Galerkin discretization via DG methods Isogeometric analysis Spatial mixed discretization Implementations and advantages of high order methods Convergence theories of fully discrete numerical methods Construction of fully discrete numerical schemes Types of convergence and a priori error estimates Coarse error estimates for a fixed value ε > 0 Fine error estimates and convergence of numerical interfaces as ε, h, τ 0 A posteriori error estimates and adaptive methods Spatial and temporal adaptivity Coarse and fine a posteriori error estimates for phase field models Applications and extensions Materials science applications Fluid and solid mechanics applications Image and data processing applications Biology applications Other variants of phase field models Nonlocal and factional order phase field models Stochastic phase field models Conclusion Acknowledgements References Further readings A review of level set methods to model interfaces moving under complex physics: Recent challenges and advances Introduction Overview Outline of review article: The evolution of level set methods Level set methods: Background and formulation Formulation and equations of motion Advantages of this formulation Numerical approximations A first example: Geometry Narrow banding and extension velocities Narrow band level set methods Implementation of narrow band methods Reinitialization Modern reinitialization techniques Extension velocities Need for extension velocities Constructing extension velocities Transport and diffusion of material quantities on an evolving interface Applications of narrow band and extension methodologies Application of extension velocities: Two-phase flow and industrial inkjet printing Problem statement Equations of motion Algorithms and numerical implementation Meshing Wall contact angles, boundary conditions Dealing with viscoelasticity A comment about mass loss Computing implementation Physical parameters and results Application of extension physics: Micro-bubble dynamics Problem statement Equations of motion Algorithms and approximations Results Multi-phase physics: Mathematical formulation and algorithms for tracking multiple regions Beyond two phases Previous algorithms to handle multi-phase evolution The Voronoi Implicit Interface Method Motivation and fundamental idea of VIIM Algorithm flow Mathematical formulation Implementation of Voronoi reconstruction steps Applications of the Voronoi Implicit Interface Method Sintering and grain growth Variable density fluid flow Soap bubbles and industrial foams The dynamics of foam evolution A scale-separation model A mathematical model for foam evolution Sharp interface physics: Implicit mesh discontinuous Galerkin methods The challenge of sharp interface physics Smoothed interface methods Sharp interface methods Hybrid interface methods A high-order discontinuous Galerkin implicit mesh level set method for sharp interface physics Application: High-order DG implicit mesh level set methods for sharp interface fluid dynamics Summary Acknowledgement References Free boundary problems in fluids and materials Introduction to geometric free boundary problems in fluids and materials Aspects of modelling Mathematical model of two-phase flow Setting and generic balance equations Incompressibility Conservation of momentum Jump condition at the interface Problem formulation of two-phase flow The Stefan problem with surface tension and kinetic undercooling The Stefan problem with capillary melt surface Phase variables and phase field models Enthalpy formulation of the Stefan problem Allen-Cahn equation and phase field models Numerical methods for two-phase flow Introduction Numerics for multiphase flow: Some general considerations and problems Mesh moving ALE formulation of the model problem Variational treatment of interface forces Mesh deformation Moving mesh method for the two-phase problem: Overall method Level set method for two-phase flow Pressure jump and XFEM Numerical methods for models with a parabolic interface equation Explicit treatment, parametric representation Implicit treatment, level set Anisotropic motion of level sets Implicit treatment, phase field Model problems, examples, and applications Uniaxial extensional flow in liquid bridges Problem setting Comparison of experimental and numerical results Parameter variations and bridge shapes Strain and shear Two-phase flow under microgravity without mass transfer Surface deformation by thermocapillary convection Reorientation behaviour of cryogenic liquids Material accumulation by melting and solidification Welded joints Dendritic solidification with and without flow in the liquid Sharp interface approach for dendritic growth Dendritic growth with convection in the melt Phase field approach Acknowledgements References Discrete Riemannian calculus on shell space Introduction Related work Shape spaces Interpolation and extrapolation Riemannian splines Discrete variational methods Riemannian geometry and Hessian structure of shell space Brief recap of smooth Riemannian calculus Curve length and path energy Levi-Civita connection Parallel transport, geodesics, exponential map, Riemann curvature tensor Riemannian metric and Hessian structure Riemannian metric from Hessian Elastic thin shell energies Membrane energy Bending energy Deformation energy of thin shells Hessian structure on thin shells Hessian structure on spatially discrete shells Membrane energy Bending energy Hessian of discrete elastic energy induces metric Discrete Riemannian calculus Time-discrete geodesic paths Time-discrete geodesic calculus Discrete Riemannian splines Continuous Riemannian splines Time-discrete Riemannian splines Discrete Riemannian calculus in discrete shell space Interpolation in discrete shell space Natural regularization and physical tuning Lack of symmetry Nonuniqueness Extrapolation in discrete shell space Parallel transport in discrete shell space Spline interpolation in discrete shell space Splines in vertex space LΘA approximation Discussion References Index A B C D E F G H I J K L M N O P R S T U V W X Y