دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sariel Har-peled
سری: Mathematical Surveys and Monographs 173
ISBN (شابک) : 0821849115, 9780821849118
ناشر: American Mathematical Society
سال نشر: 2011
تعداد صفحات: 378
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Geometric approximation algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های تقریب هندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
الگوریتمهای دقیق برای برخورد با اجسام هندسی پیچیده، پیادهسازی در عمل سخت و کند هستند. در طول 20 سال گذشته یک نظریه از الگوریتم های تقریب هندسی ظهور کرده است. این الگوریتم ها نسبت به الگوریتم های دقیق خود ساده، سریع و قوی تر هستند. این کتاب اولین کتابی است که الگوریتم های تقریب هندسی را با جزئیات پوشش می دهد. علاوه بر این، تکنیکهای هندسه محاسباتی سنتیتر که به طور گسترده در توسعه چنین الگوریتمهایی مانند نمونهگیری، برنامهریزی خطی و غیره استفاده میشوند، نیز بررسی میشوند. سایر موضوعات تحت پوشش عبارتند از جستجوی تقریبی نزدیکترین همسایه، تقریب شکل، هستههای مرکزی، کاهش ابعاد، و جاسازیها. موضوعات تحت پوشش نسبتا مستقل هستند و با تمرینات تکمیل می شوند. نزدیک به 200 شکل رنگی در متن گنجانده شده است تا شواهد و ایده ها را نشان دهد
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas