دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Michael C. Wimberly
سری: Chapman & Hall/CRC Data Science Series
ISBN (شابک) : 1032347716, 9781032347714
ناشر: CRC Press/Chapman & Hall
سال نشر: 2023
تعداد صفحات: 309
[310]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 Mb
در صورت تبدیل فایل کتاب Geographic Data Science with R: Visualizing and Analyzing Environmental Change به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده های جغرافیایی با R: تجسم و تجزیه و تحلیل تغییرات محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حوزه رو به رشد علم داده، تکنیکهای فراوانی را برای تجزیه و تحلیل مجموعه دادههای جغرافیایی بزرگ و پیچیده، از جمله تحلیلهای توصیفی، توضیحی، و پیشبینی ارائه کرده است. با این حال، استفاده از این روش ها تنها بخشی از فرآیند کلی علم داده های جغرافیایی است. سایر مراحل حیاتی شامل غربالگری مقادیر داده های مشکوک، مدیریت داده های از دست رفته، هماهنگ سازی داده ها از منابع متعدد، خلاصه سازی داده ها، و تجسم داده ها و نتایج تجزیه و تحلیل است. اگرچه کتابهای زیادی در مورد روشهای آماری و یادگیری ماشینی موجود است، تعداد کمی از آنها موضوع گستردهتر جریانهای کاری علمی برای پردازش و تحلیل دادههای مکانی را در بر میگیرد.
هدف علوم داده های جغرافیایی با R پر کردن این شکاف با ارائه مجموعه ای از آموزش ها با هدف آموزش است. شیوه های خوب برای استفاده از داده های مکانی برای رسیدگی به مشکلات در جغرافیای محیطی. این مبتنی بر زبان و محیط R است که در حال حاضر بهترین گزینه را برای کار با داده های مکانی و غیر مکانی متنوع در یک پلت فرم ارائه می دهد. تکنیکهای اساسی برای پردازش و تجسم دادههای جدولی، برداری، و شطرنجی از طریق یک سری مثالهای عملی و پس از مطالعات موردی معرفی میشوند که انواع مختلفی از دادهها را برای رسیدگی به مشکلات پیچیدهتر ترکیب میکنند.
این کتاب مخاطبان زیادی خواهد داشت. هم دانشآموزان و هم متخصصان میتوانند از آن به عنوان یک کتاب کار برای یادگیری تکنیکهای سطح بالا برای پردازش و تجزیه و تحلیل دادههای مکانی با R استفاده کنند. همچنین به عنوان کتاب درسی مناسب است. اگرچه در نظر گرفته نشده است که مقدمه ای جامع برای R ارائه کند، اما به گونه ای طراحی شده است که برای خوانندگانی که حداقل دانشی در زمینه کدنویسی دارند اما تجربه کمی با R دارند، قابل دسترسی باشد.
Key ویژگی ها:
The burgeoning field of data science has provided a wealth of techniques for analysing large and complex geospatial datasets, including descriptive, explanatory, and predictive analytics. However, applying these methods is just one part of the overall process of geographic data science. Other critical steps include screening for suspect data values, handling missing data, harmonizing data from multiple sources, summarizing the data, and visualizing data and analysis results. Although there are many books available on statistical and machine learning methods, few encompass the broader topic of scientific workflows for geospatial data processing and analysis.
The purpose of Geographic Data Science with R is to fill this gap by providing a series of tutorials aimed at teaching good practices for using geospatial data to address problems in environmental geography. It is based on the R language and environment, which currently provides the best option for working with diverse spatial and non-spatial data in a single platform. Fundamental techniques for processing and visualizing tabular, vector, and raster data are introduced through a series of practical examples followed by case studies that combine multiple types of data to address more complex problems.
The book will have a broad audience. Both students and professionals can use it as a workbook to learn high-level techniques for geospatial data processing and analysis with R. It is also suitable as a textbook. Although not intended to provide a comprehensive introduction to R, it is designed to be accessible to readers who have at least some knowledge of coding but little to no experience with R.
Key Features:
Cover Half Title Series Page Title Page Copyright Page Dedication Contents List of Figures List of Tables Preface About the Author 1. Introduction to R 1.1. Basic Calculations 1.2. R Objects 1.2.1. Vectors 1.2.2. Matrices and lists 1.2.3. Data frames 1.3. R Functions 1.3.1. Data input and graphics 1.3.2. Statistical analysis 1.4. Tips for Programming in R 1.5. Practice 2. Graphics with ggplot2 2.1. Creating a Simple Plot 2.2. Aesthetic Mappings 2.3. Facets 2.4. Geometric Objects 2.5. Scales 2.6. Themes 2.7. Combining ggplot Functions 2.8. Other Types of Plots 2.8.1. Scatterplots 2.8.2. Bar charts 2.8.3. Histograms 2.8.4. Boxplots 2.9. Practice 3. Processing Tabular Data 3.1. Single Table Verbs 3.1.1. Select and rename 3.1.2. The pipe operator 3.1.3. Filter 3.1.4. Arrange 3.1.5. Mutate and transmute 3.1.6. Application 3.2. Summarizing 3.2.1. Counts 3.2.2. Summary functions 3.3. Pivoting Data 3.4. Joining Tables 3.5. Practice 4. Dates in R 4.1. Converting Characters to Dates 4.2. Other lubridate Operators and Functions 4.3. Practice 5. Vector Geospatial Data 5.1. Importing Geospatial Data 5.2. Creating Simple Maps 5.3. Overlaying Vector Datasets 5.4. Choropleth Maps 5.5. Modifying the Appearance of the Map 5.6. Exporting Graphics Output 5.7. Practice 6. Raster Geospatial Data—Continuous 6.1. Importing Raster Data 6.2. Maps of Raster Data 6.3. Multilayer Rasters 6.4. Computations on Raster Objects 6.5. Practice 7. Raster Geospatial Data—Discrete 7.1. Importing and Mapping Land Cover Data 7.2. Reclassifying Raster Data 7.3. Focal Analysis of Raster Data 7.4. Land Cover Change Analysis 7.5. Land Cover Transition Matrices 7.6. Mapping Specific Land Cover Changes 7.7. Practice 8. Coordinate Reference Systems 8.1. Reprojecting Vector Data 8.2. Reprojecting Raster Data 8.3. Specifying Coordinate Reference Systems 8.4. Practice 9. Combining Vector Data with Continuous Raster Data 9.1. Accessing Data with R Packages 9.2. Zonal Statistics 9.3. Zone Size and Raster Cell Size 9.4. Extracting Raster Values with Point Data 9.5. Practice 10. Combining Vector Data with Discrete Raster Data 10.1. Visualizing and Manipulating Vector Data 10.2. Zonal Summaries of Discrete Raster Data 10.3. Summarizing Land Cover With Stream Buffers 10.4. Summarizing Land Cover With Point Buffers 10.5. Practice 11. Application—Wildfire Severity Analysis 11.1. Remote Sensing Image Analysis 11.2. Burn Severity Classification 11.3. The Wildland-Urban Interface 11.4. Topographic Effects 11.4.1. Data processing 11.4.2. Generalized additive modeling 11.5. Practice 12. Application—Species Distribution Modeling 12.1. Tree Species Data 12.2. WorldClim Historical Climate Data 12.3. Modeling the Climate Niche 12.3.1. Subalpine fir 12.3.2. Douglas-fir 12.4. Accuracy Assessment 12.5. Climate Change Projections 12.6. Practice Appendix Bibliography Index