ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Genetics Essentials. Concepts and Connections

دانلود کتاب ملزومات ژنتیک مفاهیم و ارتباطات

Genetics Essentials. Concepts and Connections

مشخصات کتاب

Genetics Essentials. Concepts and Connections

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781429230407 
ناشر: W. H. Freeman and Company 
سال نشر: 2010 
تعداد صفحات: 536 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 50,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Genetics Essentials. Concepts and Connections به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ملزومات ژنتیک مفاهیم و ارتباطات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ملزومات ژنتیک مفاهیم و ارتباطات

Учебник по генетике.
به اصول ژنتیک خوش آمدید: مفاهیم و ارتباطات، یک کتاب درسی مختصر ژنتیک که به طور خاص برای دوره یک ترم شما طراحی شده است. در طول سه نسخه از متن جامع تر من، ژنتیک: رویکرد مفهومی، هدف من کمک به دانش آموزان بود تا روی تصویر بزرگ ژنتیک تمرکز کنند. در نوشتن اصول ژنتیک، می‌خواستم همچنان از مفاهیم کلیدی برای راهنمایی دانش‌آموزان در تسلط بر ژنتیک استفاده کنم، اما با رویکردی متمرکزتر.
هر فصل از ملزومات ژنتیک ساده‌سازی شده است، اما متن همچنان ویژگی‌هایی را که ژنتیک را ساخته است حفظ می‌کند. : یک رویکرد مفهومی موفق: متن و تصاویر به طور یکپارچه ادغام شده اند، تاکید زیادی بر حل مسئله، و مهمتر از همه، تمرکز قوی بر مفاهیم و ارتباطاتی که ژنتیک را برای دانش آموزان معنادار می کند.


توضیحاتی درمورد کتاب به خارجی

Учебник по генетике.
Welcome to Genetics Essentials: Concepts and Connections, a brief genetics textbook designed specifically for your one-semester course. Throughout the three editions of my more comprehensive text, Genetics: A Conceptual Approach,my goal was to help students concentrate on the big picture of genetics. In writing Genetics Essentials, I wanted to continue to use key concepts to guide students in mastering genetics, but with a more focused approach.
Each chapter of Genetics Essentials has been streamlined, but the text still maintains the features that have made Genetics: A Conceptual Approach successful: seamlessly merged text and illustrations, a strong emphasis on problem solving, and, most importantly, a strong focus on the concepts and connections that make genetics meaningful for students.



فهرست مطالب

Cover Page
Title Page
Copyright Page
Dedication Page
Brief Contents
CONTENTS
Letter from the Author
Preface
	HALLMARK FEATURES
	MEDIA AND SUPPLEMENTS
	ACKNOWLEDGMENTS
Chapter 1: Introduction to Genetics
	ALBINISM AMONG THE HOPIS
	1.1: Genetics Is Important to Individuals, to Society, and to the Study of Biology
		The Role of Genetics in Biology
		Genetic Diversity and Evolution
		Divisions of Genetics
		Model Genetic Organisms
	1.2: Humans Have Been Using Genetics for Thousands of Years
		The Early Use and Understanding of Heredity
		The Rise of the Science of Genetics
		The Future of Genetics
	1.3: A Few Fundamental Concepts Are Important for the Start of Our Journey into Genetics
Chapter 2: Chromosomes and Cellular Reproduction
	THE BLIND MEN’S RIDDLE
	2.1: Prokaryotic and Eukaryotic Cells Differ in a Number of Genetic Characteristics
	2.2: Cell Reproduction Requires the Copying of the Genetic Material, Separation of the Copies, and Cell Division
		Prokaryotic Cell Reproduction
		Eukaryotic Cell Reproduction
		The Cell Cycle and Mitosis
		Genetic Consequences of the Cell Cycle
		Connecting Concepts: Counting Chromosomes and DNA Molecules
	2.3: Sexual Reproduction Produces Genetic Variation Through the Process of Meiosis
		Meiosis
		Consequences of Meiosis
		Connecting Concepts: Mitosis and Meiosis Compared
		Meiosis in the Life Cycles of Animals and Plants
Chapter 3: Basic Principles of Heredity
	THE GENETICS OF RED HAIR
	3.1: Gregor Mendel Discovered the Basic Principles of Heredity
		Mendel’s Success
		Genetic Terminology
	3.2: Monohybrid Crosses Reveal the Principle of Segregation and the Concept of Dominance
		What Monohybrid Crosses Reveal
		Connecting Concepts: Relating Genetic Crosses to Meiosis
		Predicting the Outcomes of Genetic Crosses
		The Testcross
		Incomplete Dominance
		Genetic Symbols
		Connecting Concepts: Ratios in Simple Crossess
	3.3: Dihybrid Crosses Reveal the Principle of Independent Assortment
		Dihybrid Crosses
		The Principle of Independent Assortment
		Relating the Principle of Independent Assortment to Meiosis
		Applying Probability and the Branch Diagram to Dihybrid Crosses
		The Dihybrid Testcross
	3.4: Observed Ratios of Progeny May Deviate from Expected Ratios by Chance
		The Goodness-of-Fit Chi-Square Test
	3.5: Geneticists Often Use Pedigrees to Study the Inheritance of Human Characteristics
		Analysis of Pedigrees
Chapter 4: Extensions and Modifications of Basic Principles
	CUÉNOT’S ODD YELLOW MICE
	4.1: Sex Is Determined by a Number of Different Mechanisms
		Chromosomal Sex-Determining Systems
		Genic Sex-Determining Systems
		Environmental Sex Determination
		Sex Determination in Drosophila melanogaster
		Sex Determination in Humans
	4.2: Sex-Linked Characteristics Are Determined by Genes on the Sex Chromosomes
		X-Linked White Eyes in Drosophila
		Model Genetic Organism: The Fruit Fly Drosophila melanogaster
		X-Linked Color Blindness in Humans
		Symbols for X-Linked Genes
		Dosage Compensation
		Y-Linked Characteristics
		Connecting Concepts: Recognizing Sex-Linked Inheritance
	4.3: Dominance, Penetrance, and Lethal Alleles Modify Phenotypic Ratios
		Dominance Is Interaction Between Genes at the Same Locus
		Penetrance and Expressivity Describe How Genes Are Expressed As Phenotype
		Lethal Alleles May Alter Phenotypic Ratios
	4.4: Multiple Alleles at a Locus Create a Greater Variety of Genotypes and Phenotypes Than Do Two Alleles
		The ABO Blood Group
	4.5: Gene Interaction Takes Place When Genes at Multiple Loci Determine a Single Phenotype
		Gene Interaction That Produces Novel Phenotypes
		Gene Interaction with Epistasis
		Connecting Concepts: Interpreting Ratios Produced by Gene Interaction
		Complementation: Determining Whether Mutations Are at the Same Locus or at Different Loci
	4.6: Sex Influences the Inheritance and Expression of Genes in a Variety of Ways
		Sex-Influenced and Sex-Limited Characteristics
		Cytoplasmic Inheritance
		Genetic Maternal Effect
		Genomic Imprinting
	4.7: The Expression of a Genotype May Be Influenced by Environmental Effects
		Environmental Effects on Gene Expression
		The Inheritance of Continuous Characteristics
Chapter 5: Linkage, Recombination, and Eukaryotic Gene Mapping
	ALFRED STURTEVANT AND THE FIRST GENETIC MAP
	5.1: Linked Genes Do Not Assort Independently
	5.2: Linked Genes Segregate Together and Crossing Over Produces Recombination Between Them
		Notation for Crosses with Linkage
		Complete Linkage Compared with Independent Assortment
		Crossing Over with Linked Genes
		Calculating Recombination Frequency
		Coupling and Repulsion
		Connecting Concepts: Relating Independent Assortment, Linkage, and Crossing Over
		Predicting the Outcomes of Crosses with Linked Genes
		Testing for Independent Assortment
		Gene Mapping with Recombination Frequencies
		Constructing a Genetic Map with Two-Point Testcrosses
	5.3: A Three-Point Testcross Can Be Used to Map Three Linked Genes
		Constructing a Genetic Map with the Three-Point Testcross
		Connecting Concepts: Stepping Through the Three-Point Cross
		Effect of Multiple Crossovers
		Mapping with Molecular Markers
Chapter 6: Bacterial and Viral Genetic Systems
	GUTSY TRAVELERS
	6.1: Genetic Analysis of Bacteria Requires Special Approaches and Methods
		Techniques for the Study of Bacteria
		The Bacterial Genome
		Plasmids
		Gene Transfer in Bacteria
		Conjugation
		Natural Gene Transfer and Antibiotic Resistance
		Transformation in Bacteria
		Bacterial Genome Sequences
		Model Genetic Organism: The Bacterium Escherichia coli
	6.2: Viruses Are Simple Replicating Systems Amenable to Genetic Analysis
		Techniques for the Study of Bacteriophages
		Transduction: Using Phages to Map Bacterial Genes
		Connecting Concepts: Three Methods for Mapping Bacterial Genes
		Gene Mapping in Phages
		RNA Viruses
		Human Immunodeficiency Virus and AIDS
Chapter 7: Chromosome Variation
	TRISOMY 21 AND THE DOWN-SYNDROME CRITICAL REGION
	7.1: Chromosome Mutations Include Rearrangements, Aneuploids, and Polyploids
		Chromosome Morphology
		Types of Chromosome Mutations
	7.2: Chromosome Rearrangements Alter Chromosome Structure
		Duplications
		Deletions
		Inversions
		Translocations
		Fragile Sites
	7.3: Aneuploidy Is an Increase or Decrease in the Number of Individual Chromosomes
		Types of Aneuploidy
		Effects of Aneuploidy
		Aneuploidy in Humans
	7.4: Polyploidy Is the Presence of More Than Two Sets of Chromosomes
		Autopolyploidy
		Allopolyploidy
		The Significance of Polyploidy
	7.5: Chromosome Variation Playsan Important Role in Evolution
Chapter 8: DNA: The Chemical Nature of the Gene
	NEANDERTHAL’S DNA
	8.1: Genetic Material Possesses Several Key Characteristics
	8.2: All Genetic Information Is Encoded in the Structure of DNA
		Early Studies of DNA
		DNA As the Source of Genetic Information
		Watson and Crick’s Discovery of the Three-Dimensional Structure of DNA
	8.3: DNA Consists of Two Complementary and Antiparallel Nucleotide Strands That Form a Double Helix
		The Primary Structure of DNA
		Secondary Structures of DNA
		Connecting Concepts: Genetic Implications of DNA Structure
	8.4: Large Amounts of DNA Are Packed into a Cell
	8.5: A Bacterial Chromosome Consists of a Single Circular DNA Molecule
	8.6: Eukaryotic Chromosomes Are DNA Complexed to Histone Proteins
		Chromatin Structure
		Centromere Structure
		Telomere Structure
	8.7: Eukaryotic DNA Contains Several Classes of Sequence Variation
		Types of DNA Sequences in Eukaryotes
Chapter 9: DNA Replication and Recombination
	PREVENTING TRAIN WRECKS IN REPLICATION
	9.1: Genetic Information Must Be Accurately Copied Every Time a Cell Divides
	9.2: All DNA Replication Takes Place in a Semiconservative Manner
		Meselson and Stahl’s Experiment
		Modes of Replication
		Requirements of Replication
		Direction of Replication
	9.3: The Replication of DNA Requires a Large Number of Enzymes and Proteins
		Bacterial DNA Replication
		Connecting Concepts: The Basic Rules of Replication
		Eukaryotic DNA Replication
		Replication at the Ends of Chromosomes
		Replication in Archaea
	9.4: Recombination Takes Place Through the Breakage, Alignment, and Repair of DNA Strands
Chapter 10: From DNA to Proteins: Transcription and RNA Processing
	RNA IN THE PRIMEVAL WORLD
	10.1: RNA, Consisting of a Single Strand of Ribonucleotides, Participates in a Variety of Cellular Functions
		The Structure of RNA
		Classes of RNA
	10.2: Transcription Is the Synthesis of an RNA Molecule from a DNA Template
		The Template for Transcription
		The Substrate for Transcription
		The Transcription Apparatus
		The Process of Bacterial Transcription
		Connecting Concepts: The Basic Rules of Transcription
	10.3: Many Genes Have Complex Structures
		Gene Organization
		Introns
		The Concept of the Gene Revisited
	10.4: Many RNA Molecules Are Modified after Transcription in Eukaryotes
		Messenger RNA Processing
		Connecting Concepts: Eukaryotic Gene Structure and Pre-mRNA Processing
		The Structure and Processing of Transfer RNAs
		The Structure and Processing of Ribosomal RNA
		Small Interfering RNAs and MicroRNAs
		Model Genetic Organism: The Nematode Worm Caenorhabditis elegans
Chapter 11: From DNA to Proteins: Translation
	THE DEADLY DIPHTHERIA TOXIN
	11.1: The Genetic Code Determines How the Nucleotide Sequence Specifies the Amino Acid Sequence of a Protein
		The Structure and Function of Proteins
		Breaking the Genetic Code
		Characteristics of the Genetic Code
		Connecting Concepts: Characteristics of the Genetic Code
	11.2: Amino Acids Are Assembled into a Protein Through the Mechanism of Translation
		The Binding of Amino Acids to Transfer RNAs
		The Initiation of Translation
		Elongation
		Termination
		Connecting Concepts: A Comparison of Bacterial and Eukaryotic Translation
	11.3: Additional Properties of Translation and Proteins
		Polyribosomes
		The Posttranslational Modifications of Proteins
		Translation and Antibiotics
Chapter 12: Control of Gene Expression
	STRESS, SEX, AND GENE REGULATION IN BACTERIA
	12.1: The Regulation of Gene ExpressionIs Critical for All Organisms
	12.2: Many Aspects of Gene Regulation Are Similar in Bacteria and Eukaryotes
		Genes and Regulatory Elements
		Levels of Gene Regulation
	12.3: Gene Regulation in Bacterial Cells
		Operon Structure
		Negative and Positive Control: Inducible and Repressible Operons
		The lac Operon of Escherichia coli
		Mutations in lac
		Positive Control and Catabolite Repression
		The trp Operon of Escherichia coli
	12.4: Gene Regulation in Eukaryotic Cells Takes Place at Multiple Levels
		Changes in Chromatin Structure
		Transcription Factors and Transcriptional Activator Proteins
		Gene Regulation by RNA Processing and Degradation
		RNA Interference and Gene Regulation
		Gene Regulation in the Course of Translation and Afterward
		Connecting Concepts: A Comparison of Bacterial and Eukaryotic Gene Control
		Model Genetic Organism: The Plant Arabidopsis thaliana
Chapter 13: Gene Mutations, Transposable Elements, and DNA Repair
	A FLY WITHOUT A HEART
	13.1: Mutations Are Inherited Alterations in the DNA Sequence
		The Importance of Mutations
		Categories of Mutations
		Types of Gene Mutations
		Phenotypic Effects of Mutations
		Suppressor Mutations
		Mutation Rates
	13.2: Mutations Are Potentially Caused by a Number of Different Natural and Unnatural Factors
		Spontaneous Replication Errors
		Spontaneous Chemical Changes
		Chemically Induced Mutations
		Radiation
		Detecting Mutations with the Ames Test
	13.3: Transposable Elements Are Mobile DNA Sequences Capable of Inducing Mutations
		General Characteristics of Transposable Elements
		Transposition
		The Mutagenic Effects of Transposition
		The Evolutionary Significance of Transposable Elements
	13.4: A Number of Pathways Repair Changes in DNA
		Genetic Diseases and Faulty DNA Repair
Chapter 14: Molecular Genetic Analysis, Biotechnology, and Genomics
	FEEDING THE FUTURE POPULATION OF THE WORLD
	14.1: Molecular Techniques Are Used to Isolate, Recombine, and Amplify Genes
		The Molecular Genetics Revolution
		Working at the Molecular Level
		Cutting and Joining DNA Fragments
		Viewing DNA Fragments
		Cloning Genes
		Amplifying DNA Fragments by Using the Polymerase Chain Reaction
	14.2: Molecular Techniques Can Be Used to Find Genes of Interest
		Gene Libraries
		Positional Cloning
		In Silico Gene Discovery
	14.3: DNA Sequences Can Be Determined and Analyzed
		Restriction Fragment Length Polymorphisms
		DNA Sequencing
		DNA Fingerprinting
	14.4: Molecular Techniques Are Increasingly Used to Analyze Gene Function
		Forward and Reverse Genetics
		Transgenic Animals
		Knockout Mice
		Model Genetic Organism: The Mouse Mus musculus
		Silencing Genes by Using RNA Interference
	14.5: Biotechnology Harnesses the Power of Molecular Genetics
		Pharmaceuticals
		Specialized Bacteria
		Agricultural Products
		Genetic Testing
		Gene Therapy
	14.6: Genomics Determines and Analyzes the DNA Sequences of Entire Genomes
		Genetic Maps
		Physical Maps
		Sequencing an Entire Genome
		The Human Genome Project
		Single-Nucleotide Polymorphisms
		Bioinformatics
	14.7: Functional Genomics Determines the Function of Genes by Using Genomic-Based Approaches
		Predicting Function from Sequence
		Gene Expression and Microarrays
	14.8: Comparative Genomics Studies How Genomes Evolve
		Prokaryotic Genomes
		Eukaryotic Genomes
		The Human Genome
		Proteomics
Chapter 15: Cancer Genetics
	PALLADIN AND THE SPREAD OF CANCER
	15.1: Cancer Is a Group of Diseases Characterized by Cell Proliferation
		Tumor Formation
		Cancer As a Genetic Disease
		The Role of Environmental Factors in Cancer
	15.2: Mutations in a Number of Different Types of Genes Contribute to Cancer
		Oncogenes and Tumor-Suppressor Genes
		Genes That Control the Cycle of Cell Division
		DNA-Repair Genes
		Genes That Regulate Telomerase
		Genes That Promote Vascularization and the Spread of Tumors
	15.3: Changes in Chromosome Number and Structure Are Often Associated with Cancer
	15.4: Viruses Are Associated with Some Cancers
	15.5: Colorectal Cancer Arises Through the Sequential Mutation of a Number of Genes
Chapter 16: Quantitative Genetics
	PORKIER PIGS THROUGH QUANTITATIVE GENETICS
	16.1: Quantitative Characteristics Vary Continuously and Many Are Influenced by Alleles at Multiple Loci
		The Relation Between Genotype and Phenotype
		Types of Quantitative Characteristics
		Polygenic Inheritance
		Kernel Color in Wheat
	16.2: Analyzing Quantitative Characteristics
		Distributions
		The Mean
		The Variance
		Applying Statistics to the Study of a Polygenic Characteristic
	16.3: Heritability Is Used to Estimate the Proportion of Variation in a Trait That Is Genetic
		Phenotypic Variance
		Types of Heritability
		Calculating Heritability
		The Limitations of Heritability
		Locating Genes That Affect Quantitative Characteristics
	16.4: Genetically Variable Traits Change in Response to Selection
		Predicting the Response to Selection
		Limits to Selection Response
Chapter 17: Population and Evolutionary Genetics
	GENETIC RESCUE OF BIGHORN SHEEP
	17.1: Genotypic and Allelic Frequencies Are Used to Describe the Gene Pool of a Population
		Calculating Genotypic Frequencies
		Calculating Allelic Frequencies
	17.2: The Hardy–Weinberg Law Describes the Effect of Reproduction on Genotypic and Allelic Frequencies
		Genotypic Frequencies at Hardy–Weinberg Equilibrium
		Closer Examination of the Assumptions of the Hardy–Weinberg Law
		Implications of the Hardy–Weinberg Law
		Testing for Hardy–Weinberg Proportions
		Estimating Allelic Frequencies by Using the Hardy–Weinberg Law
		Nonrandom Mating
	17.3: Several Evolutionary Forces Potentially Cause Changes in Allelic Frequencies
		Mutation
		Migration
		Genetic Drift
		Natural Selection
		Connecting Concepts: The General Effects of Forces That Change Allelic Frequencies
	17.4: Organisms Evolve Through Genetic Change Taking Place Within Populations
	17.5: New Species Arise Through the Evolution of Reproductive Isolation
		The Biological Species Concept
		Reproductive Isolating Mechanisms
		Modes of Speciation
	17.6: The Evolutionary History of a Group of Organisms Can Be Reconstructed by Studying Changes in Homologous Characteristics
		The Construction of Phylogenetic Trees
	17.7: Patterns of Evolution Are Revealed by Changes at the Molecular Level
		Rates of Molecular Evolution
		The Molecular Clock
		Genome Evolution
Glossary
Answers to Selected Questions and Problems
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
INDEX




نظرات کاربران