دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Stephan Winkler, Leonardo Trujillo, Charles Ofria, Ting Hu سری: Genetic and Evolutionary Computation ISBN (شابک) : 9789819984121, 9789819984138 ناشر: Springer سال نشر: 2024 تعداد صفحات: 343 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Genetic Programming. Theory and Practice XX به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه ریزی ژنتیک تئوری و عمل XX نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تئوری و عمل برنامه ریزی ژنتیکی برخی از تأثیرگذارترین محققان در زمینه برنامه ریزی ژنتیکی (GP) را گرد هم می آورد، که هر یک بر روی تقاطع های منحصر به فرد و جالب توسعه نظری و کاربردهای عملی این پارادایم یادگیری ماشین مبتنی بر تکامل کار می کنند. موضوعات مورد علاقه ویژه برای کتاب امسال شامل تکنیکهای مدلسازی قدرتمند از طریق رگرسیون نمادین مبتنی بر GP، مکانیسمهای انتخاب جدید است که به هدایت فرآیند تکاملی کمک میکند، رویکردهای مدولار برای GP، و کاربردها در امنیت سایبری، پزشکی زیستی، و ترکیب برنامهها، و همچنین مقالاتی توسط پزشک عمومی که بر قابلیت استفاده و نتایج دنیای واقعی تمرکز دارد. به طور خلاصه، خوانندگان نگاهی اجمالی به وضعیت فعلی هنر در تحقیقات GP خواهند داشت.
Genetic Programming Theory and Practice brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year’s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine, and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the- art in GP research.
Preface Acknowledgments Contents Contributors 1 TPOT2: A New Graph-Based Implementation of the Tree-Based Pipeline Optimization Tool for Automated Machine Learning 1.1 Introduction 1.2 Related Work 1.3 Evolutionary Algorithm 1.4 GraphPipelineIndividual Representation 1.4.1 Mutation 1.4.2 Crossover 1.5 TPOT2 API 1.5.1 TPOTEstimator 1.5.2 Ensembling 1.6 Experiment Set-Up 1.6.1 TPOT1 Versus TPOT2 1.7 Results and Discussion 1.8 Conclusions 1.8.1 Future Work References 2 Analysis of a Pairwise Dominance Coevolutionary Algorithm with Spatial Topology 2.1 Introduction 2.2 Preliminaries 2.2.1 Coevolutionary Algorithms 2.2.2 Spatial Topologies for PDCoEA 2.2.3 Error Thresholds 2.2.4 Problems 2.2.5 MaximinHill—A Problem for Error Thresholds 2.3 Experimental Methodology 2.4 Experiments 2.4.1 Setup 2.4.2 Spatial Topology PDCoEA 2.4.3 Payoff and Genotypic Diversity 2.4.4 Error Threshold in STPDCoEA 2.5 Related Work 2.6 Conclusion References 3 Accelerating Image Analysis Research with Active Learning Techniques in Genetic Programming 3.1 Introduction 3.2 Data Sets 3.2.1 KOMATSUNA 3.2.2 Cell Classification 3.3 Active Learning 3.4 AL-GP Applied to Decision Tree GP 3.4.1 Decision Tree GP (DT-GP) 3.4.2 Active Learning Implementation 3.4.3 KOMATSUNA Multi-image Results 3.4.4 KOMATSUNA Single-Image Results 3.4.5 Cell Classification 3.5 AL-GP Applied to SEE-Segment 3.5.1 SEE-Segment 3.5.2 AL Implementation for SEE-Segment 3.5.3 KOMATSUNA Results 3.6 Conclusions References 4 How the Combinatorics of Neutral Spaces Leads Genetic Programming to Discover Simple Solutions 4.1 Introduction 4.2 Related Work 4.2.1 I/O Systems 4.2.2 RNA Studies 4.2.3 GP on Boolean Functions 4.2.4 Neutral Networks 4.2.5 Our Earlier Work 4.3 Genotypes, Phenotypes, Behavior, Fitness 4.3.1 Discrimination of Genotypes and Phenotypes 4.3.2 The Difference of Structural and Semantic Neutrality 4.4 Methods 4.4.1 Linear Genetic Programming 4.4.2 Boolean Function Programs/Circuits 4.4.3 Visualization Method 4.5 The Role of Neutrality 4.5.1 Longer Programs 4.5.2 A New Fitness Function 4.6 Results 4.6.1 A Comparison of Success Rates 4.6.2 Comparison of Search Trajectory Networks for Three Targets 4.6.3 Simpler Solutions 4.7 Discussion and Future Work References 5 The Impact of Step Limits on Generalization and Stability in Software Synthesis 5.1 Introduction 5.2 Background 5.2.1 The Push Language and Interpreter 5.2.2 Step Limits and Infinite Loops 5.2.3 Success, Generalization, and Stability 5.3 Methodology and Experimental Design 5.4 Results 5.4.1 Last Index of Zero 5.4.2 Fuel Cost 5.4.3 Middle Character 5.4.4 GCD 5.5 Discussion 5.5.1 Stability of Evolved Programs 5.5.2 Stability and (mis)match with Instruction Set 5.5.3 Finding Additional Generalizing Solutions 5.5.4 Saving Computational Effort 5.6 Future Work 5.7 Conclusions References 6 Genetic Programming Techniques for Glucose Prediction in People with Diabetes 6.1 Introduction 6.2 The Problem of Glucose Management 6.3 Background 6.3.1 Grammatical Evolution for Glucose Prediction 6.3.2 Recent Techniques for Glucose Prediction Based on Grammatical Evolution 6.4 Proposed Framework for Glucose Control 6.4.1 Framework Description 6.4.2 Experimental Results 6.5 Conclusions References 7 Methods for Rich Phylogenetic Inference Over Distributed Sexual Populations 7.1 Introduction 7.2 Methods 7.2.1 Genome Instrumentation 7.2.2 Genealogical Inference 7.2.3 Population Size Inference 7.2.4 Positive Selection Inference 7.2.5 Software and Data 7.3 Results and Discussion 7.3.1 Genealogical Inference 7.3.2 Population Size Inference 7.3.3 Positive Selection Inference 7.4 Conclusion References 8 A Melting Pot of Evolution and Learning 8.1 Introduction 8.2 Machine Learning 8.2.1 Binary and Multinomial Classification Through Evolutionary Symbolic Regression ch8Sipper2022esr 8.2.2 Classy Ensemble: A Novel Ensemble Algorithm for Classification ch8sipper2022classy 8.2.3 EC-KitY: Evolutionary Computation Tool Kit in Python ch8eckity2023 8.3 Deep Learning 8.3.1 Evolution of Activation Functions for Deep Learning-Based Image Classification ch8Lapid2022 8.3.2 Adaptive Combination of a Genetic Algorithm and Novelty Search for Deep Neuroevolution ch8SegalS22 8.4 Adversarial Deep Learning 8.4.1 An Evolutionary, Gradient-Free, Query-Efficient, Black-Box Algorithm for Generating Adversarial Instances in Deep Networks ch8Lapid2022Query 8.4.2 Foiling Explanations in Deep Neural Networks ch8Vitrack2023 8.4.3 Patch of Invisibility: Naturalistic Black-Box Adversarial Attacks on Object Detectors ch8Lapid2023 8.5 Concluding Remark References 9 Particularity 9.1 Overview 9.2 Lexicase 9.3 Variance 9.4 Epsilon 9.5 Batched 9.6 Downsampled 9.7 Informed 9.8 Weighted 9.9 Gradient 9.10 Plexicase 9.11 Hidden 9.12 Living 9.13 Honor References 10 The OpenELM Library: Leveraging Progress in Language Models for Novel Evolutionary Algorithms 10.1 Introduction 10.2 Background: Evolution and LLMs 10.3 OpenELM Evolutionary Algorithms 10.4 Language Models as Evolutionary Operators 10.4.1 Diff Models 10.4.2 LMX: Language Model Crossover 10.5 Engineering Challenges 10.5.1 OpenELM Inference Optimizations 10.5.2 Execution of Generated Code 10.6 OpenELM Domains 10.6.1 Sodarace 10.6.2 Image Generation 10.6.3 Prompts 10.6.4 Programming Puzzles 10.7 Discussion 10.8 Conclusion References 11 GP for Continuous Control: Teacher or Learner? The Case of Simulated Modular Soft Robots 11.1 Introduction 11.2 Related Works 11.3 Background: Simulated Voxel-Based Soft Robots 11.3.1 VSR Morphology 11.3.2 VSR Controller 11.4 Evolutionary Optimization of VSR Controllers 11.4.1 Multi-layer Perceptron Optimized with a Genetic Algorithm 11.4.2 Array of Regression Trees Optimized with GP 11.4.3 Regression Graphs Optimized with GraphEA 11.5 Experiments and Results 11.5.1 Direct Evolution of the Controller 11.5.2 Offline Imitation Learning 11.6 Discussion 11.7 Concluding Remarks References 12 Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and Data Validation 12.1 Introduction 12.2 Related Work 12.3 Shape-constrained Symbolic Regression 12.3.1 Interaction Transformation Evolutionary Algorithm 12.4 Shape Constraint Handling 12.4.1 Single-Objective Approach 12.4.2 Multi-objective Approach 12.4.3 Feasible-Infeasible Two-Population Approach 12.5 Constraint Evaluation 12.5.1 Optimistic Approach 12.5.2 Pessimistic Approach 12.6 Real World Problems 12.6.1 Twin-Screw Extruder Modeling 12.6.2 Data Validation for Industrial Friction Performance Measurements 12.6.3 Magnetization Curves 12.7 Conclusion References 13 Phylogeny-Informed Fitness Estimation for Test-Based Parent Selection 13.1 Introduction 13.2 Phylogeny-Informed Fitness Estimation 13.2.1 Phylogeny Tracking 13.3 Methods 13.3.1 Lexicase Selection 13.3.2 Diagnostic Experiments 13.3.3 Genetic Programming Experiments 13.3.4 Statistical Analyses 13.3.5 Software and Data Availability 13.4 Results and Discussion 13.4.1 Phylogeny-Informed Estimation Reduces Diversity Loss Caused by Subsampling 13.4.2 Phylogeny-Informed Estimation Improves Poor Exploration Caused by Down-Sampling 13.4.3 Phylogeny-Informed Estimation Can Enable Extreme Subsampling for Some Genetic Programming Problems 13.5 Conclusion References 14 Origami: (un)folding the Abstraction of Recursion Schemes for Program Synthesis 14.1 Introduction 14.2 Recursion Schemes 14.2.1 Fixed Point of a Linked List 14.2.2 Functor Algebra 14.2.3 Well-Known Recursion Schemes 14.3 Origami 14.3.1 How to Choose a Template 14.3.2 Jokers to the Right: Catamorphism 14.3.3 When You Started Off with Nothing: Anamorphism 14.3.4 Stuck in the Middle with You: Hylomorphism 14.3.5 Clowns to the Left of Me: Accumorphism 14.4 Preliminary Results 14.5 Discussion and Final Remarks References 15 Reachability Analysis for Lexicase Selection via Community Assembly Graphs 15.1 Introduction 15.2 Approach 15.2.1 Community Assembly Graphs 15.2.2 Calculating Stability 15.2.3 Assumptions 15.2.4 Reachability Analysis 15.3 Background 15.3.1 Lexicase Selection 15.3.2 Community Assembly Graphs 15.4 Proof of Concept in NK Landscapes 15.4.1 Methods 15.4.2 Results 15.5 Proof of Concept in Genetic Programming 15.5.1 Methods 15.5.2 Results 15.6 Conclusion References 16 Let's Evolve Intelligence, Not Solutions 16.1 Introduction 16.2 What Should We Strive For? 16.3 What Assumptions Are Limiting Us? 16.3.1 Posit#1: Impossible to Engineer Intelligence 16.3.2 Posit #2: No Occam's Razor for Intelligence 16.3.3 Posit #3: Intelligence Is Grounded 16.3.4 Posit #4: Intelligence Is Transferable 16.3.5 Posit #5: Intelligence Is Intrinsically Self-reinforcing 16.4 What Do We Need? 16.4.1 A Caveat: Intelligence == Process and/or Intelligence == Capabilities and/or Intelligence == Individual(s) 16.4.2 The World 16.4.3 The Drivers 16.4.4 Models of Understanding 16.4.5 Process of Intelligence Self-Reinforcement 16.5 How Should We Approach It? 16.5.1 Revisiting Reproducibility 16.5.2 Back to the Intelligence Function 16.5.3 Genetic Programming of Intelligence 16.6 Conclusions References Appendix Index Index