دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Fangfang Zhang, Su Nguyen, Yi Mei, Mengjie Zhang سری: Machine Learning: Foundations, Methodologies, and Applications ISBN (شابک) : 9789811648595, 981164859X ناشر: Springer سال نشر: 2021 تعداد صفحات: [357] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Genetic Programming for Production Scheduling. An Evolutionary Learning Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه ریزی ژنتیکی برای برنامه ریزی تولید. یک رویکرد یادگیری تکاملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Acknowledgements Contents Acronyms List of Figures List of Tables Part I Introduction 1 Introduction 1.1 Production Scheduling 1.2 Machine Learning 1.2.1 Training Set and Test Set 1.2.2 Types of Machine Learning Tasks 1.2.3 Machine Learning Paradigms 1.3 Evolutionary Learning and Genetic Programming 1.3.1 Evolutionary Computation 1.3.2 Genetic Programming 1.4 Framework of Genetic Programming for Production Scheduling 1.5 Interpretable Machine Learning 1.6 Terminology 1.7 Organisation of the Book 2 Preliminaries 2.1 Job Shop Scheduling 2.2 Exact, Heuristic, and Hyper-heuristic Approaches 2.3 Hyper-heuristics in Evolutionary Learning 2.4 Scheduling Heuristics for Job Shop Scheduling 2.5 Genetic Programming for Production Scheduling Heuristics 2.5.1 Advantages of Genetic Programming for Production Scheduling 2.5.2 Overall Process of Genetic Programming for Job Shop Scheduling 2.5.3 Extracting High-Level Heuristic from Low-Level Heuristics 2.6 Evaluations of Genetic Programming Hyper-heuristics 2.7 Chapter Summary Part II Genetic Programming for Static Production Scheduling Problems 3 Learning Schedule Construction Heuristics 3.1 Challenges and Motivations 3.2 Algorithm Design and Details 3.2.1 Meta-algorithm for Schedule Construction 3.2.2 Representations of Scheduling Construction Heuristics 3.2.3 Fitness Evaluation 3.2.4 Proposed Genetic Programming Algorithm 3.3 Empirical Study 3.3.1 Parameter Settings 3.3.2 Datasets 3.3.3 Performance of Learned Heuristics 3.3.4 Further Analyses 3.4 Chapter Summary 4 Learning Schedule Improvement Heuristics 4.1 Challenges and Motivations 4.2 Algorithm Design and Details 4.2.1 Meta-algorithm for Iterative Dispatching Rules 4.2.2 Representation of IDRs 4.2.3 Enhancing IDRs with Variable Neighbourhood Search 4.3 Empirical Study 4.3.1 Comparing IDR Variants and Schedule Construction Heuristics 4.3.2 Influence of kmax on IDR-VNS 4.4 Chapter Summary 5 Learning to Augment Operations Research Algorithms 5.1 Challenges and Motivations 5.2 Constraint Programming Model for Job Shop Scheduling Problems 5.3 Algorithm Design and Details 5.3.1 Representation 5.3.2 Evaluation Mechanism and Fitness Function 5.3.3 Genetic Operations 5.3.4 Pre-selection of Promising Programs 5.4 Empirical Study 5.4.1 Datasets 5.4.2 Parameter Settings 5.4.3 Performance Metrics 5.4.4 Results 5.4.5 Further Analyses 5.4.6 Examples of Evolved Variable Selectors 5.5 Chapter Summary Part III Genetic Programming for Dynamic Production Scheduling Problems 6 Representations with Multi-tree and Cooperative Coevolution 6.1 Challenges and Motivations 6.2 Algorithm Design and Details 6.2.1 Genetic Programming with Cooperative Coevolution 6.2.2 Genetic Programming with Multi-tree Representation 6.3 Experiment Design 6.3.1 Simulation Model 6.3.2 Comparison Design 6.3.3 Parameter Settings 6.3.4 Experiment Configuration 6.4 Results and Discussions 6.4.1 Quality of the Learned Scheduling Heuristics 6.4.2 Size of Learned Scheduling Heuristics 6.4.3 Training Time 6.5 Chapter Summary 7 Efficiency Improvement with Multi-fidelity Surrogates 7.1 Challenges and Motivations 7.2 Algorithm Design and Details 7.2.1 Framework of the Algorithm 7.2.2 Knowledge Transfer 7.2.3 Algorithm Summary 7.3 Experiment Design 7.3.1 Comparison Design 7.3.2 Specialised Parameter Settings of Genetic Programming 7.4 Results and Discussions 7.4.1 Training Time 7.4.2 Quality of Learned Scheduling Heuristics 7.4.3 Effectiveness of Knowledge Transfer Mechanism 7.5 Further Analyses 7.5.1 Number Analysis of Multi-fidelity Surrogate Models 7.5.2 Sensitivity Analysis of Knowledge Sharing Ratio 7.6 Chapter Summary 8 Search Space Reduction with Feature Selection 8.1 Challenges and Motivations 8.2 Algorithm Design and Details 8.2.1 Two-stage Genetic Programming with Feature Selection 8.2.2 Individual Adaptation Strategies and Genetic Programming Feature Selection 8.2.3 Algorithm Summary 8.3 Experiment Design 8.3.1 Comparison Design 8.3.2 Specialised Parameter Settings of Genetic Programming 8.4 Results and Discussions 8.4.1 Quality of Learned Scheduling Heuristics 8.4.2 Rule Size 8.4.3 Number of Unique Features 8.4.4 Training Time 8.5 Further Analyses 8.5.1 Selected Features 8.5.2 Insights of Learned Scheduling Heuristics 8.6 Chapter Summary 9 Search Mechanism with Specialised Genetic Operators 9.1 Challenges and Motivations 9.2 Algorithm Design and Details 9.2.1 Framework of the Algorithm 9.2.2 Subtree Importance Measure Based on Feature Importance 9.2.3 Subtree Importance Measure Based on the Behaviour Correlation 9.2.4 Crossover with Recombinative Guidance 9.2.5 Algorithm Summary 9.3 Experiment Design 9.3.1 Comparison Design 9.3.2 Specialised Parameter Settings of Genetic Programming 9.4 Results and Discussions 9.4.1 Quality of the Learned Scheduling Heuristics 9.4.2 Depth Ratios of Selected Subtrees 9.4.3 Correlations of Selected Subtrees 9.4.4 Probability Difference 9.4.5 Training Time 9.5 Further Analysis 9.5.1 Number of Invalid Crossover Operations 9.5.2 Sizes of Learned Scheduling Heuristics 9.5.3 Insight of Learned Scheduling Heuristics 9.5.4 Occurrences of Features 9.6 Chapter Summary Part IV Genetic Programming for Multi-objective Production Scheduling Problems 10 Learning Heuristics for Multi-objective Dynamic Production Scheduling Problems 10.1 Challenges and Motivations 10.2 Algorithm Design and Details 10.2.1 Representation 10.2.2 Multi-objective Genetic Programming Algorithm 10.2.3 Simulation Models for Dynamic Job Shop Scheduling Problems 10.2.4 Benchmark Heuristics 10.2.5 Statistical Analysis 10.3 Empirical Study 10.3.1 MOGP Performance with Single Objective 10.3.2 MOGP Performance with Multiple Objectives 10.4 Further Analyses 10.4.1 Learned Pareto Front 10.4.2 Robustness of Learned Heuristics 10.5 Chapter Summary 11 Cooperative Coevolution for Multi-objective Production Scheduling Problems 11.1 Challenges and Motivations 11.2 Algorithm Design and Details 11.2.1 Representations 11.2.2 Cooperative Coevolution MOGP for Dynamic Job Shop Scheduling 11.2.3 Genetic Operators 11.2.4 Parameters 11.2.5 Job Shop Simulation Model 11.2.6 Performance Measures for MOGP Methods 11.3 Empirical Study 11.3.1 Pareto Front of Learned Scheduling Heuristics 11.3.2 Comparison to Heuristics Combining Existing DRs and Dynamic DDARs 11.3.3 Comparison to Heuristics Combining Existing DRs and Regression-Based DDARs 11.3.4 Further Analysis 11.4 Chapter Summary 12 Learning Scheduling Heuristics for Multi-objective Dynamic Flexible Job Shop Scheduling 12.1 Challenges and Motivations 12.2 Algorithm Design and Details 12.2.1 Genetic Programming Multi-objective with NSGA-II Strategy 12.2.2 Genetic Programming Multi-objective with SPEA2 Strategy 12.3 Experiment Design 12.3.1 Comparison Design 12.3.2 Specialised Parameter Settings of Genetic Programming 12.4 Results and Discussions 12.4.1 Quality of Learned Scheduling Heuristics 12.4.2 Generalisation of Learned Scheduling Heuristics 12.4.3 Consistency of Rule Behaviour 12.4.4 Insight of the Distribution of Learned Scheduling Heuristics 12.5 Chapter Summary Part V Multitask Genetic Programming for Production Scheduling Problems 13 Multitask Learning in Hyper-Heuristic Domain with Dynamic Production Scheduling 13.1 Traditional Evolutionary Multitask Learning Algorithms 13.2 Challenges and Motivations 13.3 Algorithm Design and Details 13.3.1 Framework of the Algorithm 13.3.2 Knowledge Sharing Among Tasks 13.3.3 Algorithm Summary 13.4 Experiment Design 13.4.1 Multitask Dynamic Flexible Job Shop Scheduling Task Definition 13.4.2 Comparison Design 13.4.3 Specialised Parameter Settings of Genetic Programming 13.5 Results and Discussions 13.5.1 Adaptation of MFEA to Genetic Programming in Dynamic Scheduling 13.5.2 Quality of Learned Scheduling Heuristics 13.5.3 Insight of Learned High-Level Scheduling Heuristics 13.6 Chapter Summary 14 Adaptive Multitask Genetic Programming for Dynamic Job Shop Scheduling 14.1 Challenges and Motivations 14.2 Algorithm Design and Details 14.2.1 Framework of the Algorithm 14.2.2 Task Relatedness Measure 14.2.3 Assisted Task Selection Strategy 14.3 Experiment Design 14.3.1 Comparison Design 14.3.2 Specialised Parameter Settings of Genetic Programming 14.4 Results and Discussions 14.4.1 Quality of Learned Scheduling Heuristics 14.4.2 Relatedness Between Tasks 14.4.3 Selected Assisted Tasks 14.4.4 Training Time 14.5 Further Analyses 14.5.1 Insights of Learned Scheduling Heuristics 14.5.2 Population Diversity Versus Knowledge Transfer 14.5.3 Is It Good to Always Choose the Most Related Task? 14.6 Chapter Summary 15 Surrogate-Assisted Multitask Genetic Programming for Learning Scheduling Heuristics 15.1 Challenges and Motivations 15.2 Algorithm Design 15.2.1 Framework of the Algorithm 15.2.2 Surrogate Model 15.2.3 Knowledge Sharing with Surrogate 15.2.4 Algorithm Summary 15.3 Experiment Design 15.3.1 Comparison Design 15.3.2 Specialised Parameter Settings of Genetic Programming 15.4 Results and Discussions 15.4.1 Quality of Learned Scheduling Heuristics 15.4.2 Effectiveness of Constructed Surrogate Models 15.4.3 Effectiveness of Diversity Preservation 15.4.4 Individual Allocation for Tasks 15.5 Further Analyses 15.5.1 Sizes of Learned Scheduling heuristics 15.5.2 Insight of Learned Scheduling Heuristics 15.6 Chapter Summary Part VI Conclusions and Prospects 16 Conclusions and Prospects 16.1 Main Conclusions 16.2 Further Discussions and Future Prospects Appendix References Index