ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Generative Adversarial Networks with Python

دانلود کتاب شبکه های متخاصم مولد با پایتون

Generative Adversarial Networks with Python

مشخصات کتاب

Generative Adversarial Networks with Python

دسته بندی: الگوریتم ها و ساختارهای داده ها: شناخت الگو
ویرایش: v1.5 
نویسندگان:   
سری: Machine Learning Mastery 
 
ناشر:  
سال نشر: 2020 
تعداد صفحات: 654 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Generative Adversarial Networks with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شبکه های متخاصم مولد با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
Contents
Preface
Introductions
	Welcome
I Foundations
	What are Generative Adversarial Networks
		Overview
		What Are Generative Models?
		What Are Generative Adversarial Networks?
		Why Generative Adversarial Networks?
		Further Reading
		Summary
	How to Develop Deep Learning Models With Keras
		Tutorial Overview
		Keras Model Life-Cycle
		Keras Functional Models
		Standard Network Models
		Further Reading
		Summary
	How to Upsample with Convolutional Neural Networks
		Tutorial Overview
		Need for Upsampling in GANs
		How to Use the Upsampling Layer
		How to Use the Transpose Convolutional Layer
		Further Reading
		Summary
	How to Implement the GAN Training Algorithm
		Tutorial Overview
		How to Implement the GAN Training Algorithm
		Understanding the GAN Loss Function
		How to Train GAN Models in Practice
		Further Reading
		Summary
	How to Implement GAN Hacks to Train Stable Models
		Tutorial Overview
		Challenge of Training GANs
		Heuristics for Training Stable GANs
		Deep Convolutional GANs (DCGANs)
		Soumith Chintala's GAN Hacks
		Further Reading
		Summary
II GAN Basics
	How to Develop a 1D GAN from Scratch
		Tutorial Overview
		Select a One-Dimensional Function
		Define a Discriminator Model
		Define a Generator Model
		Training the Generator Model
		Evaluating the Performance of the GAN
		Complete Example of Training the GAN
		Extensions
		Further Reading
		Summary
	How to Develop a DCGAN for Grayscale Handwritten Digits
		Tutorial Overview
		MNIST Handwritten Digit Dataset
		How to Define and Train the Discriminator Model
		How to Define and Use the Generator Model
		How to Train the Generator Model
		How to Evaluate GAN Model Performance
		Complete Example of GAN for MNIST
		How to Use the Final Generator Model
		Extensions
		Further Reading
		Summary
	How to Develop a DCGAN for Small Color Photographs
		Tutorial Overview
		CIFAR-10 Small Object Photograph Dataset
		How to Define and Train the Discriminator Model
		How to Define and Use the Generator Model
		How to Train the Generator Model
		How to Evaluate GAN Model Performance
		Complete Example of GAN for CIFAR-10
		How to Use the Final Generator Model
		Extensions
		Further Reading
		Summary
	How to Explore the Latent Space When Generating Faces
		Tutorial Overview
		Vector Arithmetic in Latent Space
		Large-Scale CelebFaces Dataset (CelebA)
		How to Prepare the CelebA Faces Dataset
		How to Develop a GAN for CelebA
		How to Explore the Latent Space for Generated Faces
		Extensions
		Further Reading
		Summary
	How to Identify and Diagnose GAN Failure Modes
		Tutorial Overview
		How To Train a Stable GAN
		How To Identify a Mode Collapse
		How To Identify Convergence Failure
		Further Reading
		Summary
III GAN Evaluation
	How to Evaluate Generative Adversarial Networks
		Overview
		Problem with Evaluating Generator Models
		Manual GAN Generator Evaluation
		Qualitative GAN Generator Evaluation
		Quantitative GAN Generator Evaluation
		Which GAN Evaluation Scheme to Use
		Further Reading
		Summary
	How to Implement the Inception Score
		Tutorial Overview
		What Is the Inception Score?
		How to Calculate the Inception Score
		How to Implement the Inception Score With NumPy
		How to Implement the Inception Score With Keras
		Problems With the Inception Score
		Further Reading
		Summary
	How to Implement the Frechet Inception Distance
		Tutorial Overview
		What Is the Frechet Inception Distance?
		How to Calculate the FID
		How to Implement the FID With NumPy
		How to Implement the FID With Keras
		How to Calculate the FID for Real Images
		Further Reading
		Summary
IV GAN Loss
	How to Use Different GAN Loss Functions
		Overview
		Challenge of GAN Loss
		Standard GAN Loss Functions
		Alternate GAN Loss Functions
		Effect of Different GAN Loss Functions
		Further Reading
		Summary
	How to Develop a Least Squares GAN (LSGAN)
		Tutorial Overview
		What Is Least Squares GAN
		How to Develop an LSGAN for MNIST
		How to Generate Images With LSGAN
		Further Reading
		Summary
	How to Develop a Wasserstein GAN (WGAN)
		Tutorial Overview
		What Is a Wasserstein GAN?
		How to Implement Wasserstein Loss
		Wasserstein GAN Implementation Details
		How to Train a Wasserstein GAN Model
		How to Generate Images With WGAN
		Further Reading
		Summary
V Conditional GANs
	How to Develop a Conditional GAN (cGAN)
		Tutorial Overview
		Conditional Generative Adversarial Networks
		Fashion-MNIST Clothing Photograph Dataset
		Unconditional GAN for Fashion-MNIST
		Conditional GAN for Fashion-MNIST
		Conditional Clothing Generation
		Extensions
		Further Reading
		Summary
	How to Develop an Information Maximizing GAN (InfoGAN)
		Tutorial Overview
		What Is the Information Maximizing GAN
		How to Implement the InfoGAN Loss Function
		How to Develop an InfoGAN for MNIST
		How to Use Control Codes With an InfoGAN
		Extensions
		Further Reading
		Summary
	How to Develop an Auxiliary Classifier GAN (AC-GAN)
		Tutorial Overview
		Auxiliary Classifier Generative Adversarial Networks
		Fashion-MNIST Clothing Photograph Dataset
		How to Define AC-GAN Models
		How to Develop an AC-GAN for Fashion-MNIST
		How to Generate Items of Clothing With the AC-GAN
		Extensions
		Further Reading
		Summary
	How to Develop a Semi-Supervised GAN (SGAN)
		Tutorial Overview
		What Is the Semi-Supervised GAN?
		How to Implement the Semi-Supervised Discriminator
		How to Develop a Semi-Supervised GAN for MNIST
		How to Use the Final SGAN Classifier Model
		Extensions
		Further Reading
		Summary
VI Image Translation
	Introduction to Pix2Pix
		Overview
		The Problem of Image-to-Image Translation
		Pix2Pix GAN for Image-to-Image Translation
		Pix2Pix Architectural Details
		Applications of the Pix2Pix GAN
		Insight into Pix2Pix Architectural Choices
		Further Reading
		Summary
	How to Implement Pix2Pix Models
		Tutorial Overview
		What Is the Pix2Pix GAN?
		How to Implement the PatchGAN Discriminator Model
		How to Implement the U-Net Generator Model
		How to Implement Adversarial and L1 Loss
		How to Update Model Weights
		Further Reading
		Summary
	How to Develop a Pix2Pix End-to-End
		Tutorial Overview
		What Is the Pix2Pix GAN?
		Satellite to Map Image Translation Dataset
		How to Develop and Train a Pix2Pix Model
		How to Translate Images With a Pix2Pix Model
		How to Translate Google Maps to Satellite Images
		Extensions
		Further Reading
		Summary
	Introduction to the CycleGAN
		Overview
		Problem With Image-to-Image Translation
		Unpaired Image-to-Image Translation With CycleGAN
		What Is the CycleGAN Model Architecture
		Applications of CycleGAN
		Implementation Tips for CycleGAN
		Further Reading
		Summary
	How to Implement CycleGAN Models
		Tutorial Overview
		What Is the CycleGAN Architecture?
		How to Implement the CycleGAN Discriminator Model
		How to Implement the CycleGAN Generator Model
		How to Implement Composite Models and Loss
		How to Update Model Weights
		Further Reading
		Summary
	How to Develop the CycleGAN End-to-End
		Tutorial Overview
		What Is the CycleGAN?
		How to Prepare the Horses to Zebras Dataset
		How to Develop a CycleGAN to Translate Horse to Zebra
		How to Perform Image Translation with CycleGAN
		Extensions
		Further Reading
		Summary
VII Advanced GANs
	Introduction to the BigGAN
		Overview
		Brittleness of GAN Training
		Develop Better GANs by Scaling Up
		How to Scale-Up GANs With BigGAN
		Example of Images Generated by BigGAN
		Further Reading
		Summary
	Introduction to the Progressive Growing GAN
		Overview
		GANs Are Generally Limited to Small Images
		Generate Large Images by Progressively Adding Layers
		How to Progressively Grow a GAN
		Images Generated by the Progressive Growing GAN
		How to Configure Progressive Growing GAN Models
		Further Reading
		Summary
	Introduction to the StyleGAN
		Overview
		Lacking Control Over Synthesized Images
		Control Style Using New Generator Model
		What Is the StyleGAN Model Architecture
		Examples of StyleGAN Generated Images
		Further Reading
		Summary
VIII Appendix
	Getting Help
		Applied Neural Networks
		Programming Computer Vision Books
		Official Keras Destinations
		Where to Get Help with Keras
		How to Ask Questions
		Contact the Author
	How to Setup Python on Your Workstation
		Overview
		Download Anaconda
		Install Anaconda
		Start and Update Anaconda
		Install Deep Learning Libraries
		Further Reading
		Summary
	How to Setup Amazon EC2 for Deep Learning on GPUs
		Overview
		Setup Your AWS Account
		Launch Your Server Instance
		Login, Configure and Run
		Build and Run Models on AWS
		Close Your EC2 Instance
		Tips and Tricks for Using Keras on AWS
		Further Reading
		Summary
IX Conclusions
	How Far You Have Come




نظرات کاربران