دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Roshani Raut, Pranav D Pathak, Sachin R Sakhare, Sonali Patil سری: ISBN (شابک) : 2022041650, 9781032068114 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 223 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Generative Adversarial Networks and Deep Learning: Theory and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های متخاصم مولد و یادگیری عمیق: نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors List of Contributors 1 Generative Adversarial Networks and Its Use Cases 1.1 Introduction 1.2 Supervised Learning 1.2.1 Unsupervised Learning 1.3 Background of GAN 1.3.1 Image-To-Image Translation 1.4 Difference Between Auto Encoders and Generative Adversarial Networks 1.4.1 Auto Encoders 1.4.2 Generative Adversarial Networks 1.5 Difference Between VAN and Generative Adversarial Networks 1.6 Application of GANs 1.6.1 Application of GANs in Healthcare 1.6.2 Applications of Generative Models 1.6.2.1 Generate Examples for Image Datasets 1.6.2.2 Generate Realistic Photographs 1.6.2.3 Generate Cartoon Characters 1.6.2.4 Image-To-Image Translation 1.6.2.5 Text-To-Image Translation 1.6.2.6 Semantic-Image-To-Photo Translation 1.6.2.7 Photos to Emojis 1.6.2.8 Photograph Editing 1.6.2.9 Face Aging 1.7 Conclusion References 2 Image-To-Image Translation Using Generative Adversarial Networks 2.1 Introduction 2.2 Conventional I2I Translations 2.2.1 Filtering-Based I2I 2.2.2 Optimisation-Based I2I 2.2.3 Dictionary Learning-Based I2I 2.2.4 Deep Learning-Based I2I 2.2.5 GAN-Based I2I 2.3 Generative Adversarial Networks (GAN) 2.3.1 How GANs Work 2.3.2 Loss Functions 2.3.2.1 Minimax Loss 2.3.3 Other Generative Models 2.4 Supervised I2I Translation 2.4.1 Pix2Pix 2.4.1.1 Applications of Pix2Pix Models 2.4.2 Additional Work On Supervised I2I Translations 2.4.2.1 Single-Modal Outputs 2.4.2.2 Multimodal Outputs 2.5 Unsupervised I2I (UI2I) Translation 2.5.1 Deep Convolutional GAN (DCGAN) 2.5.1.1 DCGAN Applications 2.5.2 Conditional GAN (CGAN) 2.5.3 Cycle GAN 2.5.3.1 Cycle Consistency Loss 2.5.3.2 CycleGAN Applications 2.5.4 Additional Work On Unsupervised I2I 2.5.4.1 Single-Modal Outputs 2.6 Semi-Supervised I2I 2.7 Few-Shot I2I 2.8 Comparative Analysis 2.8.1 Metrics 2.8.2 Results 2.9 Conclusion References 3 Image Editing Using Generative Adversarial Network 3.1 Introduction 3.2 Background of GAN 3.3 Image-To-Image Translation 3.4 Motivation and Contribution 3.5 GAN Objective Functions 3.5.1 GAN Loss Challenges 3.5.2 The Problem of GAN Loss 3.5.3 Loss of Discriminator 3.5.4 GAN Loss Minimax 3.6 Image-To-Image Translation 3.6.1 Controlled Image-To-Image Conversion 3.6.1.1 CGAN 3.6.1.2 BicycleGAN 3.6.1.3 SPA-GAN 3.6.1.4 CE-GAN 3.6.2 Unsupervised Image to Image Conversion 3.6.2.1 CycleGAN 3.6.2.2 Dugan 3.6.2.3 UNIT 3.6.2.4 MUNIT 3.7 Application 3.8 Conclusion References 4 Generative Adversarial Networks for Video-To-Video Translation 4.1 Introduction 4.2 Description of Background 4.2.1 Objectives 4.3 Different Methods and Architectures 4.4 Architecture 4.4.1 Cycle GAN 4.4.2 Style GAN 4.4.3 LS-GAN 4.4.4 Disco GAN 4.4.5 Mo-Cycle GAN 4.4.6 Different GANs for Video Synthesis (Fixed Length) 4.4.7 TGAN 4.4.8 Generative Adversarial Network: Flexible Dimension Audiovisual Combination 4.4.8.1 MoCo GAN 4.4.8.2 DVD GAN 4.4.8.3 Methods and Tools for GAN 4.4.8.4 GAN Lab 4.4.9 Hyper GAN 4.4.10 Imaginaire 4.4.11 GAN Tool Compartment 4.4.12 Mimicry 4.4.13 Pygan 4.4.14 Studio GAN 4.4.15 Torch GAN 4.4.16 TF-GAN 4.4.17 Ve GANs 4.5 Conclusions References 5 Security Issues in Generative Adversarial Networks 5.1 Introduction 5.2 Motivation 5.2.1 Objectives 5.3 Related Work 5.3.1 Generative Adversarial Network 5.3.2 Overview of Security 5.3.3 GANs in Safety 5.3.3.1 Obscuring Delicate Information 5.3.4 Cyber Interruption and Malware Detection 5.3.5 Security Examination 5.4 Security Attacks in GANs 5.4.1 Cracking Passphrases 5.4.2 Hiding Malware 5.4.3 Forging Facial Detection 5.4.4 Detection and Response 5.5 Conclusion References 6 Generative Adversarial Networks-Aided Intrusion Detection System 6.1 Introduction 6.2 Application of GANs for Resolving Data Imbalance 6.3 Application of GAN as a Deep Learning Classifier 6.4 Application of GANs for Generating Adversarial Examples 6.5 Conclusion Glossary of Terms, Acronyms and Abbreviations References 7 Textual Description to Facial Image Generation 7.1 Introduction 7.2 Literature Review 7.3 Dataset Description 7.4 Proposed Methodology 7.4.1 Generator 7.4.1.1 DAN (Deep Averaging Network) 7.4.1.2 Transformer Encoder 7.4.2 Discriminator 7.4.3 Training of GAN 7.4.3.1 Loss Function 7.4.3.2 Optimizer 7.4.3.3 Discriminative Learning Rates 7.4.3.4 Dropout 7.5 Limitations 7.6 Future Scope 7.7 Conclusion 7.8 Applications References 8 An Application of Generative Adversarial Network in Natural Language Generation 8.1 Introduction 8.2 Generative Adversarial Network Model 8.2.1 Working of Generative Adversarial Network 8.2.2 Natural Language Generation 8.3 Background and Motivation 8.4 Related Work 8.5 Issues and Challenges 8.6 Case Studies: Application of Generative Adversarial Network 8.6.1 Creating Machines to Paint, Write, Compose, and Play 8.6.2 Use of GAN in Text Generation 8.6.3 Indian Sign Language Generation Using Sentence Processing and Generative Adversarial Networks 8.6.4 Applications of GAN in Natural Language Processing 8.7 Conclusions References 9 Beyond Image Synthesis: GAN and Audio 9.1 Introduction 9.1.1 Audio Signals 9.2 About GANs 9.3 Working Principal of GANs 9.4 Literatutre Survey About Different GANs 9.4.1 Time Sequence Gan Adversarial Network 9.4.2 Vector-Quantized Contrastive Predictive Coding-GAN 9.4.3 The VQCPC Encoder 9.4.4 The Generative Adversarial Network Designs 9.5 Results 9.5.1 Dataset 9.5.2 Assessment 9.6 Baselines 9.7 Quantitative Outcomes 9.8 Casual Tuning In 9.9 Results References 10 A Study On the Application Domains of Electroencephalogram for the Deep Learning-Based Transformative Healthcare 10.1 Introduction 10.2 Modalities of Deep Learning-Based Healthcare Applications 10.2.1 Medical Image Generation and Synthesis 10.2.2 EEG Signal Reconstruction and SSVEP Classification 10.2.3 Body Sensor-Induced Healthcare Applications 10.3 Healthcare Application Areas of EEG 10.3.1 Rare Disease Diagnosis 10.3.2 Robotics-Based Applications of Deep Learning Inducing EEG 10.3.3 Rehabilitation 10.3.3.1 Bipolar Disorder 10.3.3.2 Drug Rehabilitation 10.3.3.3 Gait Rehabilitation 10.3.3.4 Vascular Hemiplegia Rehabilitation 10.3.3.5 Dementia 10.3.3.6 Epilepsy 10.4 Significance of Different Electrode Placement Techniques 10.4.1 10–20 International System 10.4.2 10–10 System 10.4.3 10–5 System 10.5 Conclusion References 11 Emotion Detection Using Generative Adversarial Network 11.1 Introduction 11.2 Background Study 11.3 Deep Learning Methods Used in Gaming Applications 11.3.1 Super-Resolution GAN 11.3.2 Deep Convolutional Generative Adversarial Network (DC-GAN) 11.3.3 Conditional Embedding Self-Attention Generative Adversarial Network 11.3.4 Variational Autoencoders Generative Adversarial Network 11.3.5 Conditional Generative Adversarial Network (CGAN) 11.3.6 Token-Based One-Shot Arbitrary Dimension Generative Adversarial Network 11.3.7 Poker-Face Generative Adversarial Network 11.4 Application Areas 11.4.1 Quality Enhancement 11.4.2 Differential Rendering 11.4.3 Character Auto-Creation and Customization 11.4.4 Procedural Content Generation 11.4.5 Video Game Evaluation 11.4.6 User Emotion Identification 11.5 Conclusion References 12 Underwater Image Enhancement Using Generative Adversarial Network 12.1 Introduction 12.2 Literature Review 12.3 Proposed Method 12.3.1 Loss Function 12.3.2 Discriminator Loss 12.3.3 Generator Loss 12.4 Generative Adversarial Networks 12.5 Atrous Convolution 12.6 Experimental Results 12.6.1 Underwater Image Quality Measure (UIQM) 12.7 Conclusions References 13 Towards GAN Challenges and Its Optimal Solutions 13.1 Introduction: Background and Driving Forces 13.2 Challenges With GAN 13.3 GAN Training Problems 13.3.1 NashEquilibrium 13.3.2 Vanishing Gradient 13.3.2.1 Mode Collapse and Non-Convergence 13.4 Conclusion References Index