دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Roozbeh Razavi-Far, Ariel Ruiz-Garcia, Vasile Palade, Juergen Schmidhuber سری: Intelligent Systems Reference Library, 217 ISBN (شابک) : 3030913899, 9783030913892 ناشر: Springer سال نشر: 2022 تعداد صفحات: 362 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Generative Adversarial Learning: Architectures and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری خصمانه مولد: معماری و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعهای از کارهای تحقیقاتی اخیر را ارائه میکند که به موضوعات نظری در مورد بهبود فرآیند یادگیری و تعمیم GANها و همچنین کاربردهای پیشرفته GANها در حوزههای مختلف زندگی واقعی میپردازد. یادگیری خصمانه در سالهای اخیر توجه جوامع یادگیری ماشینی در سراسر جهان را به خود جلب کرده است. شبکههای متخاصم مولد (GANs)، به عنوان روش اصلی یادگیری خصمانه، با بهرهبرداری از مفهوم یادگیری حداقل، که در آن دو شبکه در طول فرآیند یادگیری با یکدیگر رقابت میکنند، به موفقیت و محبوبیت زیادی دست مییابند. قابلیت کلیدی آنها تولید داده های جدید و تکرار توزیع داده های موجود است که در بسیاری از کاربردهای عملی، به ویژه در بینایی کامپیوتر و پردازش سیگنال مورد نیاز است. این کتاب برای دانشگاهیان، پزشکان و دانشجویان پژوهشی در زمینه هوش مصنوعی در نظر گرفته شده است که به دنبال به روز بودن با آخرین پیشرفتها در مورد پیشرفتهای نظری GAN و کاربردهای آنها هستند.
This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.
Preface Contents 1 An Introduction to Generative Adversarial Learning: Architectures and Applications 1.1 Book Outline References 2 Generative Adversarial Networks: A Survey on Training, Variants, and Applications 2.1 Introduction 2.2 GAN Variants 2.2.1 Original Generative Adversarial Network (GAN) 2.2.2 Deep Convolutional Generative Adversarial Network (DCGAN) 2.2.3 Conditional Generative Adversarial Network (CGAN) 2.2.4 Information Maximizing Generative Adversarial Networks (InfoGAN) 2.2.5 Auxiliary Classifier Generative Adversarial Network (ACGAN) 2.2.6 Stacked Generative Adversarial Networks (StackGAN) 2.2.7 Cycle-Consistent Generative Adversarial Network (CycleGAN) 2.2.8 Wasserstein Generative Adversarial Network (WGAN) 2.2.9 Semi-Supervised Generative Adversarial Network (SSGAN) 2.2.10 Progressive Growing Generative Adversarial Network (Progressive GAN) 2.2.11 Style-Based Generative Adversarial Network (StyleGAN) 2.2.12 Bidirectional Generative Adversarial Network (BiGAN) 2.2.13 Bayesian Generative Adversarial Network (BGAN) 2.3 GAN Applications 2.4 Conclusions References 3 Fair Data Generation and Machine Learning Through Generative Adversarial Networks 3.1 Introduction 3.2 Overview of FairGAN Framework 3.2.1 Definitions and Metrics of Fairness 3.2.2 FairGAN Framework 3.3 Simplified Fairness Aware Generative Adversarial Networks 3.3.1 Model Framework Design 3.3.2 Empirical Evaluation 3.4 Achieving Causal Fairness in Data Generation 3.4.1 Model Framework Design 3.4.2 Achieving Direct/Indirect/Counterfactual Fairness 3.4.3 Empirical Evaluation 3.5 Achieving Fairness in Classification 3.5.1 Model Framework Design 3.5.2 Achieving Fair Classification 3.5.3 Empirical Evaluation 3.6 Related Work 3.6.1 Dealing with Different Types of Structural Data 3.6.2 Dealing with Privacy 3.7 Future Directions 3.7.1 Variants Comparison and Architecture Design 3.7.2 Achieving Long-Term Fairness in Dynamic Decision Making 3.7.3 Achieving Fairness in Regression 3.7.4 Achieving Fairness in Recommendation 3.7.5 Open Source Software 3.8 Conclusions References 4 Quaternion Generative Adversarial Networks 4.1 Introduction 4.2 Quaternion Algebra 4.3 Generative Learning in the Quaternion Domain 4.3.1 The Quaternion Adversarial Framework 4.3.2 Quaternion Fully Connected Layers 4.3.3 Quaternion Convolutional Layers 4.3.4 Quaternion Pooling Layers 4.3.5 Quaternion Batch Normalization 4.3.6 Quaternion Spectral Normalization 4.3.7 Quaternion Weight Initialization 4.3.8 Training 4.4 GAN Architectures in the Quaternion Domain 4.4.1 Vanilla QGAN 4.4.2 Advanced QGAN 4.4.3 Evaluation Metrics 4.5 Experimental Evaluation 4.5.1 Evaluation of Spectral Normalization Methods 4.6 Conclusions References 5 Image Generation Using Continuous Conditional Generative Adversarial Networks 5.1 Introduction and Motivation 5.2 Continuous Conditional Generative Adversarial Networks 5.2.1 Derivation of HVDL and SVDL Losses 5.2.2 A Rule of Thumb for Hyper-parameter Selection 5.2.3 Algorithms for Training CcGANs 5.3 Theoretical Analysis 5.4 Experiments 5.4.1 Case Study 1: Circular 2-D Gaussians 5.4.2 Case Study 2: UTKFace 5.5 Conclusion References 6 Generative Adversarial Networks for Data Augmentation in Hyperspectral Image Classification 6.1 Introduction 6.1.1 Dataset 6.1.2 Data Availability 6.1.3 Class Imbalance 6.1.4 Data Augmentation 6.2 Previous Work 6.2.1 Data Augmentation 6.2.2 Class Imbalance 6.2.3 Applications in Hyperspectral Imaging 6.3 Wasserstein GAN 6.4 Conditional Wasserstein Generative Adversarial Network with Gradient Penalty for Hyperspectral Image Generation 6.4.1 Wasserstein Generative Adversarial Network with Gradient Penalty 6.4.2 Hyperspectral Data Patch 6.4.3 Dimensionality Reduction 6.4.4 Discriminator and Generator Models 6.4.5 Training Process 6.5 Experimental Results 6.5.1 Evaluation Metrics 6.5.2 Experimental Setting 6.5.3 Spectral Signature 6.5.4 Data Augmentation 6.5.5 Visualizations 6.6 Conclusion and Future Work References 7 Face Aging Using Generative Adversarial Networks 7.1 Introduction 7.2 Generative Adversarial Networks 7.2.1 Mode Collapse 7.2.2 GANs Types 7.2.3 Reference Architectures for Facial Imaging 7.3 Databases Used for Facial Aging 7.3.1 FG-NET 7.3.2 UTKFace 7.3.3 CACD 7.3.4 MORPH 7.3.5 IMDB-Wiki 7.3.6 Cross-Age LFW (CALFW) 7.3.7 Other Databases 7.4 Experiments and Results 7.4.1 CAAE Experiments 7.4.2 IPCGAN Experiments 7.4.3 Recursive Chaining of Reversible Image-to-Image Translators Experiments, RCRIIT 7.4.4 Method Comparison 7.5 Summary References 8 Embedding Time-Series Features into Generative Adversarial Networks for Intrusion Detection in Internet of Things Networks 8.1 Introduction 8.2 Related Works 8.2.1 Adversarially Learned Anomaly Detection 8.2.2 GAN Ensemble for Anomaly Detection 8.2.3 Anomaly Detection with GAN 8.2.4 Unsupervised Change Detection with GAN 8.2.5 Unsupervised Change Detection with GAN 8.3 Internet of Things Network 8.3.1 Dataset 8.3.2 IoT Testbed 8.4 Feature Embedding 8.4.1 Extracting Sequential Changes 8.4.2 Generative Adversarial Cluster Analysis 8.4.3 Training Computational Complexity 8.5 Experimental Results 8.5.1 Experimental Setting 8.5.2 Results Analysis 8.6 Conclusion References 9 Inspection of Lead Frame Defects Using Deep CNN and Cycle-Consistent GAN-Based Defect Augmentation 9.1 Introduction 9.2 Defect Inspection Using the Faster R-CNN 9.2.1 Materials 9.2.2 Defect Inspection Using the Faster R-CNN 9.3 Defect Augmentation Using the CycleGAN 9.3.1 Basic GAN Structure 9.3.2 CycleGAN Structure 9.3.3 CycleGAN Training 9.3.4 CycleGAN for Image Augmentation 9.4 Experiments 9.4.1 Experimental Result of CyleGAN 9.4.2 Experimental Result of Defect Inspection Using the Faster R-CNN 9.5 Conclusions References 10 Adversarial Learning in Accelerometer Based Transportation and Locomotion Mode Recognition 10.1 Introduction 10.2 SHL Dataset 10.3 State of the Art in Classifying the SHL Dataset 10.4 Background on Generative Adversarial Networks 10.5 Methods 10.5.1 Feature Extraction 10.5.2 Feature Scaling 10.5.3 Dealing with Class Imbalance 10.5.4 Feature Selection 10.5.5 Proposed Generative Adversarial Network 10.5.6 Hyperparameter Tuning 10.6 Implementation 10.7 Results 10.7.1 User Specific Evaluation 10.7.2 User Semi-independent Evaluation 10.7.3 User Independent Evaluation 10.8 Discussion 10.8.1 Performance Evaluation 10.8.2 Hyperparameter Tuning 10.9 Conclusion References 11 GANs for Molecule Generation in Drug Design and Discovery 11.1 Introduction 11.2 Preliminary Concepts 11.2.1 Molecular Representation 11.2.2 Evaluation Metrics 11.3 GAN-based Molecule Generation Models 11.3.1 Goal-Directed Models 11.3.2 Distribution-Learning Models 11.3.3 Applications of GAN-based Molecule Generative Models 11.4 Comparison with Other Generative Models for Molecule Generation 11.4.1 Molecule Generation Based on Other Generative Models 11.4.2 Advantages of GAN-based Models 11.4.3 Disadvantages of GAN Based Models 11.5 Challenges and Future Directions 11.5.1 New Molecular Representations 11.5.2 New Molecule Generation Models 11.5.3 Benchmarks and Metrics 11.5.4 New Pharmaceutical Objective Functions 11.5.5 Influence of Property Prediction Models 11.6 Conclusion References 12 Improved Diagnostic Performance of Arrhythmia Classification Using Conditional GAN Augmented Heartbeats 12.1 Introduction 12.1.1 ECG Synthesis Using Generative Adversarial Network 12.1.2 Related Work on Heartbeat Classification 12.1.3 Contributions 12.2 Data 12.2.1 Dataset Description 12.2.2 Data Preprocessing 12.3 Methodology 12.3.1 ECG Generation Methodology 12.3.2 Augmentation Using Deep Convolutional Conditional GANs 12.3.3 ECG Classification Methodology 12.4 Results and Discussion 12.4.1 Computing Platform 12.4.2 Evaluation Metrics 12.4.3 DCCGAN Performance Evaluation 12.4.4 Beat Classification Performance 12.5 Conclusion and Future Work References 13 Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives 13.1 Introduction 13.1.1 Magnetic Resonance Imaging 13.1.2 Limitations of Magnetic Resonance Imaging 13.1.3 Conventional Acceleration Using Compressive Sensing 13.1.4 Deep Learning Based Fast MRI 13.1.5 GAN Powered Fast MRI 13.2 Methods 13.2.1 Fundamentals of MRI Reconstruction 13.2.2 CNN Based MRI Reconstruction 13.2.3 GAN Based MRI Reconstruction 13.2.4 Evaluation Methods 13.3 Benchmarking 13.4 Discussion 13.5 Conclusion References 14 Generative Adversarial Networks for Data Augmentation in X-Ray Medical Imaging 14.1 Introduction 14.2 Previous Work on Using GANs and Transfer Learning in X-Ray Imaging 14.3 Deep Convolutional GAN (DCGAN) and Its Limitations for X-Ray Imaging 14.3.1 Architecture of DCGAN 14.3.2 DCGAN Training 14.4 Progressively Growing GAN (PGGAN) 14.4.1 Training of PGGAN 14.4.2 Phasing in a New Layer for Smooth Model Building 14.4.3 Transfer Learning for Model Building 14.5 Results and Discussion 14.5.1 Dataset 14.5.2 Augmentation Results 14.6 Conclusion References