دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کریستال ویرایش: 2 نویسندگان: Tian-You Fan, Wenge Yang, Hui Cheng, Xiao-Hong Sun سری: Springer Series in Materials Science, 260 ISBN (شابک) : 981166627X, 9789811666278 ناشر: Springer سال نشر: 2022 تعداد صفحات: 245 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Generalized Dynamics of Soft-Matter Quasicrystals: Mathematical Models, Solutions and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک تعمیم یافته شبه بلورهای ماده نرم: مدل های ریاضی، راه حل ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Second Edition Preface to the First Edition Contents Notations 1 Introduction to Soft Matter References 2 Discovery of Soft-Matter Quasicrystals and Their Properties 2.1 Experimental Observation of Quasicrystalline Phases in Soft Matter 2.2 Characters of Soft-Matter Quasicrystals 2.3 Some Concepts Concerning Possible Generalized Dynamics on Soft-Matter Quasicrystals 2.4 First and Second Kinds of Two-Dimensional Quasicrystals 2.5 Motivation of Our Discussion in the Book References 3 Introduction on Elasticity and Hydrodynamics of Solid Quasicrystals 3.1 Physical Basis of Elasticity of Quasicrystals, Phonons, and Phasons 3.2 Deformation Tensors 3.3 Stress Tensors and Equations of Motion 3.4 Free Energy Density and Elastic Constants 3.5 Generalized Hooke’s Law 3.6 Boundary Conditions and Initial Conditions 3.7 Solutions of Elasticity 3.8 Hydrodynamics of Solid Quasicrystals 3.8.1 Viscosity of Solid 3.8.2 Hydrodynamics of Solid Quasicrystals 3.9 Solution of the Hydrodynamics of Solid Quasicrystals 3.10 Conclusion and Discussion References 4 Case Study of Equation of State in Several Structured Fluids 4.1 Introduction of Equation of State in Some Fluids 4.2 Possible Equations of State 4.3 Applications to Dynamics of Soft-Matter Quasicrystals 4.4 The Incompressible Model of Soft Matter References 5 Poisson Brackets and Derivation of Equations of Motion in Soft-Matter Quasicrystals 5.1 Brownian Motion and Langevin Equation 5.2 Extended Version of Langevin Equation 5.3 Multivariable Langevin Equation, Coarse-Graining 5.4 Poisson Bracket Method in Condensed Matter Physics 5.5 Application of Poisson Bracket to Quasicrystals 5.6 Equations of Motion of Soft-Matter Quasicrystals 5.6.1 Generalized Langevin Equation 5.6.2 Derivation of Generalized Dynamic Equations of Soft-Matter Quasicrystals 5.7 Poisson Brackets Based on Lie Algebra 5.8 On Solving Governing Equations References 6 Oseen Theory and Oseen Solution 6.1 Navier–Stokes Equations 6.2 Stokes Approximation 6.3 Stokes Paradox 6.4 Oseen Modification 6.5 Oseen Steady Solution of the Flow of Incompressible Fluid Past Cylinder 6.6 The Reference Meaning of Oseen Theory and Oseen Solution to the Study in Soft Matter References 7 Dynamics of Soft-Matter Quasicrystals with 12-Fold Symmetry 7.1 Two-Dimensional Governing Equations of Soft-Matter Quasicrystals of 12-Fold Symmetry 7.2 Simplification of Governing Equations 7.2.1 Steady Dynamic Problem of Soft-Matter Quasicrystals with 12-Fold Symmetry 7.2.2 Pure Fluid Dynamics 7.3 Dislocation and Solution 7.3.1 Limitation of Zero-Order Solution of Dislocation, Possible Modification Considering the Fluid Effect 7.4 Generalized Oseen Approximation Under the Condition of Lower Reynolds Number 7.5 Steady Dynamic Equations Under Oseen Modification in Polar Coordinate System 7.6 Flow Past a Circular Cylinder 7.6.1 Two-Dimensional Flow Past Obstacle 7.6.2 Quasi-Steady Analysis—Numerical Solution by Finite Difference Method 7.6.3 Numerical Results and Analysis 7.7 Three-Dimensional Equations of Generalized Dynamics of Soft-Matter Quasicrystals with 12-Fold Symmetry 7.8 Governing Equations of Generalized Dynamics of Incompressible Soft-Matter Quasicrystals of 12-Fold Symmetry 7.9 Conclusion and Discussion References 8 Dynamics of 10-Fold Symmetrical Soft-Matter Quasicrystals 8.1 Statement on Soft-Matter Quasicrystals of 10-Fold Symmetries 8.2 Two-Dimensional Basic Equations of Soft-Matter Quasicrystals of Point Groups 10, overline10 8.3 Dislocations and Solutions 8.4 Probe on Modification of Dislocation Solution by Considering the Fluid Effect 8.5 Transient Dynamic Analysis 8.5.1 Specimen and Initial-Boundary Conditions 8.5.2 Numerical Analysis and Results 8.6 Three-Dimensional Equations of Point Group 10mm Soft-Matter Quasicrystals 8.7 Incompressible Complex Fluid Model of Soft-Matter Quasicrystals with 10-Fold Symmetry 8.8 Conclusion and Discussion References 9 Dynamics of 8-Fold Symmetric Soft-Matter Quasicrystal Models 9.1 Basic Equations of 8-Fold Symmetric Soft-Matter Quasicrystal Models 9.2 Dislocation in 8-Fold Symmetric Soft-Matter Quasicrystals 9.2.1 Elastic Static Solution 9.2.2 Modification with Consideration of the Fluid Effect 9.3 Transient Dynamics Analysis 9.3.1 Specimen 9.4 Flow Past a Circular Cylinder 9.5 Three-Dimensional Systems with 8-Fold Symmetric Soft-Matter Quasicrystals 9.6 Incompressible Model of the 8-Fold Symmetric Soft-Matter Quasicrystals 9.7 Solution Example of an Incompressible Model 9.8 Conclusion and Discussion References 10 Dynamics of 18-Fold Symmetric Soft-Matter Quasicrystals 10.1 Six-Dimensional Embedded Space 10.2 Elasticity of the Possible 18-Fold Symmetric Solid Quasicrystals 10.3 Dynamics of 18-Fold Symmetric Quasicrystals with 18 mm Point Group 10.4 The Steady Dynamic and the Static Case of the First and the Second Phason Fields 10.5 Dislocations and Solutions 10.5.1 The Zero-Order Approximate Solution for Dislocations in 18-Fold Symmetric Soft-Matter Quasicrystals 10.5.2 Modification to the Solution (10.5.3) to (10.5.6) Considering the Fluid Effect 10.6 Discussion on Transient Dynamics Analysis 10.7 Three-Dimensional Equations of Generalized Dynamics of 18-Fold Symmetric Soft-Matter Quasicrystals 10.7.1 Introduction 10.7.2 Some Basic Relations 10.7.3 Three-Dimensional Equations of Generalized Dynamics of Point Group 18 mm Soft-Matter Quasicrystals 10.8 Incompressible Generalized Dynamics of 18-Fold Symmetric Soft-Matter Quasicrystals 10.9 Other Solutions and Applications References 11 The Possible 7-, 9-, and 14-fold Symmetry Quasicrystals in Soft Matter 11.1 The Possible 7-fold Symmetry Quasicrystals with Point Group 7m of Soft Matter and the Dynamic Theory 11.2 The Possible 9-fold Symmetrical Quasicrystals with Point Group 9m of Soft Matter and Their Dynamics 11.3 Dislocation Solutions of the Possible 9-fold Symmetrical Quasicrystals of Soft Matter 11.4 The Possible 14-fold Symmetrical Quasicrystals with Point Group 14mm of Soft Matter and Their Dynamics 11.5 The Numerical Solution of Dynamics of 14-fold Symmetrical Quasicrystals of Soft Matter 11.6 Incompressible Complex Fluid Model 11.7 Conclusion and Discussion References 12 Re-Discussion on Symmetry Breaking and Elementary Excitations References 13 An Application to the Thermodynamic Stability of Soft-Matter Quasicrystals 13.1 Introduction 13.2 Extended Free Energy of the Quasicrystal System in Soft Matter 13.3 The Positive Definite Nature of the Rigidity Matrix and the Stability of the Soft-Matter Quasicrystals with 12-Fold Symmetry 13.4 Comparison and Examination of Results of Soft-Matter Quasicrystals with 12-Fold Symmetry 13.5 The Stability of 8-Fold Symmetry Soft-Matter Quasicrystals 13.6 The Stability of 10-Fold Symmetry Soft-Matter Quasicrystals 13.7 The Stability of the 18-Fold Symmetry Soft-Matter Quasicrystals 13.7.1 A Brief Review on Some Fundamental Relations from the Dynamics of the Second Kind of Soft-Matter Quasicrystals 13.7.2 Extended Free Energy of the Quasicrystals System of Second Kind 13.7.3 The Positive Definite Nature of the Rigidity Matrix and the Stability of the Soft-Matter Quasicrystals with 18-Fold Symmetry 13.7.4 Comparison and Examination 13.7.5 Some Discussions 13.8 Conclusion References 14 Applications to Device Physics—Photon Band Gap of Holographic Photonic Quasicrystals 14.1 Introduction 14.2 Design and Formation of Holographic PQCs 14.3 Band Gap of 8-fold PQCs 14.4 Band Gap of Multi-fold Complex PQCs 14.5 Fabrication of 10-Fold Holographic PQCs 14.5.1 Material and Writing System 14.5.2 Experimental Results 14.6 Band Gap of Cholesteric Liquid Crystal 14.7 Conclusions References 15 Possible Applications to General Soft Matter 15.1 A Basis of Dynamics of Two-Dimensional Soft Matter 15.2 The Outline on Governing Equations of Dynamics of Soft Matter 15.3 The Modification and Supplement to Eq. (15.2.1) 15.4 Solution of the Dynamics of Soft Matter 15.5 Conclusion and Discussion References 16 An Application to Smectic A Liquid Crystals, Dislocation, and Crack 16.1 Basic Equations 16.2 The Kleman-Pershan Solution of Screw Dislocation 16.3 Common Fundamentals of Discussion 16.4 The Simplest and Most Direct Solution and the Additional Boundary Condition 16.5 Mathematical Mistakes of the Classical Solution 16.6 The Physical Mistakes of the Classical Solution 16.7 Meaning of the Present Solution 16.8 Solution of Plastic Crack References 17 Conclusion Remarks