دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2020
نویسندگان: Raza Tahir-Kheli
سری: Graduate Texts in Physics
ISBN (شابک) : 3030206998, 9783030206994
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 666
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب General and Statistical Thermodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک عمومی و آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
General and Statistical Thermodynamics Preface to the Second Edition Preface to the First Edition Contents 1 Definitions and the Zeroth Law 1.1 Some Definitions 1.2 Large Numbers 1.3 The Zeroth Law 1.4 Some Mathematical Procedures 1.4.1 Exact Differential 1.5 Cyclic Identity 1.6 Jacobian 1.6.1 A Simple Technique 1.6.2 Jacobian Employed 1.7 Additional Helpful Identities 1.7.1 Cyclic Identity Rederived 1.7.2 Simple Identity 1.7.3 Mixed Identity References 2 Perfect Gas 2.1 Model 2.1.1 Pressure 2.1.2 Temperature 2.2 Statistical Techniques 2.2.1 Internal Energy 2.2.2 Equation of State 2.3 Monatomic and Diatomic Perfect Gases 2.3.1 Monatomic Perfect Gas 2.3.2 Diatomic Perfect Gas 2.4 Mixture of Perfect Gases 2.5 Dalton\'s Law of Partial Pressure 2.6 Perfect Gas Atmosphere 2.6.1 Barometric Equation 2.6.2 A Related Calculation 2.7 Energy of Isothermal Atmosphere 2.7.1 Atmosphere with Height-Dependent Temperature 2.8 Perfect Gas of Extremely Relativistic Particles 2.8.1 Problems 2.1–2.7 2.8.2 Exercises for the Student 3 The First Law 3.1 Heat, Work, and Internal Energy 3.1.1 Heat 3.1.2 Work 3.1.3 Internal Energy 3.2 Specific Heat 3.3 Notation 3.4 Some Applications of the First Law 3.5 Independent t and v 3.5.1 Problems 3.1–3.32 3.6 Independent t and p 3.7 Independent p and v 3.7.1 The First Law: Another Version 3.8 Enthalpy 3.8.1 Enthalpy is a State Function 3.8.2 Enthalpy and the First Law 3.9 Hess\' Rules 3.9.1 Chemothermal Reactions 3.10 Oxidation, Heat of Vaporization 3.11 Ideal Gas Adiabatics and Polytropics 3.11.1 Ideal Gas Adiabatics 3.12 Some Interrelationships 3.13 Equation of State from Bulk and Elastic Moduli 3.14 Newton\'s Law of Cooling 3.15 Internal Energy in Noninteracting Monatomic Gases Equals 3/2PV 3.16 Volume Dependence of Single Particle Energy Levels References 4 The Second Law 4.1 Ideal Gas Heat Engines 4.1.1 Nonexistence of Perpetual Machines of the Second Kind 4.2 Perfect Carnot Engine 4.3 Kelvin Description of Absolute Temperature 4.4 Infinitesimal and Finite Carnot Cycles 4.5 Entropy Calculation 4.6 Perfect Carnot Engine with Arbitrary Working Substance 4.7 Statements of the Second Law 4.7.1 The Carnot Statement 4.7.2 Clausius Statement 4.8 Entropy Increase in Spontaneous Processes 4.9 Energy Exchange Increases Total Entropy 4.10 Kelvin–Planck Version of the Second Law 4.10.1 Entropy Always Increases in Irreversible Adiabats 4.11 Non-Carnot Heat Cycle and Clausius Inequality 4.11.1 Integral Form of Clausius Inequality 4.11.2 Differential Form of Clausius Inequality 4.12 Solved Problems 4.2–4.24 4.13 Carnot Refrigerator 4.14 Idealized Version of Realistic Engine Cycles 4.15 Negative Temperature: Cursory Remark References 5 Introduction and the Zeroth Law 5.1 The First and Second Laws 5.1.1 The First–Second Law: The Clausius Version 5.1.2 The First td s Equation 5.2 Two Chambers: Entropy Calculation 5.2.1 Two Chambers: Mixing of Ideal Gases 5.3 Velocity of Sound: Newton\'s Solution 5.4 Van der Waal\'s Gas: Energy and Entropy Change 6 Van der Waals Theory of Imperfect Gases 6.1 Interacting Molecules 6.1.1 Hard Core Volume Reduction 6.2 Van der Waals Virial Expansion 6.3 Critical Point 6.3.1 Critical Constants Pc,Vc,Tc 6.4 Reduced Equation of State 6.4.1 Critical Region 6.5 Behavior Below Tc 6.5.1 Maxwell Construction 6.6 Molar Specific Volume and Density 6.6.1 Temperature Just Below the Critical Point 6.7 Lever Rule 6.8 Smooth Transition from Liquid to Gas and Vice Versa 6.9 Principle of Corresponding States 6.9.1 Figure 6.5.a: X0 as a Function of p0 for Various Fluids 6.10 Dieterici\'s Equation of State 6.10.1 Figure 6.9: Dieterici Isotherms References 7 Joule and Kelvin: Internal Energy and Enthalpy 7.1 Gay-Lussac–Joule Coefficient 7.1.1 Measurement of η(t,v) 7.2 Enthalpy: Description 7.3 Enthalpy Remaining Unchanged 7.4 Joule–Kelvin Effect: Derivation 7.4.1 JK Coefficient: Van der Waals Gas 7.4.2 JK Coefficient: Inversion Point 7.4.3 JK Coefficient: Positive and Negative Regions 7.5 Enthalpy Minimum: Gas with Three Virial Coefficients 7.6 From Empirical to Thermodynamic Temperature 7.6.1 Thermodynamic Temperature Scale: Via JGL Coefficient 7.6.2 Thermodynamic Scale: Via JK Coefficient 7.6.3 Temperature of Ice-Point: An Estimate 7.6.4 Temperature: Ideal Gas Thermodynamic Scale 7.7 Negative Temperature: Cursory Remark References 8 Euler Equation and Gibbs–Duhem Relation 8.1 Euler Equation 8.1.1 Chemical Potential 8.1.2 Multiple-Component Systems 8.2 Equations of State 8.2.1 Callen\'s Remarks 8.2.2 Equation of State: Energy Representation 8.2.3 Equation of State: Entropy Representation 8.2.4 Equations of State: Two Equations for an Ideal Gas 8.2.5 Where Is the Third Equation of State? 8.3 Gibbs–Duhem Relation: Energy Representation 8.3.1 Gibbs–Duhem Relation: Entropy Representation 8.4 Ideal Gas: Third Equation of State 8.5 Ideal Gas: Fundamental Equation 8.5.1 Ideal Gas: Entropy Representation 8.5.2 Ideal Gas: Energy Representation 8.5.3 Ideal Gas: Three Equations of State References 9 Le Châtelier Principle 9.1 The Zeroth Law of Thermodynamics: Second Look 9.1.1 The Zeroth Law of Thermodynamics: Reconfirmed 9.2 Entropy Extremum: Maximum Possible 9.2.1 Heat Energy Flow 9.2.2 Molecular Flow 9.2.3 Isothermal Compression 9.2.4 Energy Extremum: Minimum Possible 9.3 Motive Forces: Energy Formalism 9.3.1 Isobaric Entropy Flow 9.3.2 Isothermal–Isobaric Molecular Flow 9.3.3 Isothermal Compression 9.4 Physical Criteria for Thermodynamic Stability 9.4.1 Le Châtelier\'s Principle 9.4.2 Stable Self-Equilibrium 9.5 The First and Second Requirement 9.5.1 Implications of the First Requirement 9.5.2 Implications of the Second Requirement 9.6 Intrinsic Thermodynamic Stability: Chemical Potential 9.6.1 Intrinsic Stability: CP and χS>0 10 Gibbs, Helmholtz, and Clausius–Clapeyron 10.1 Energy and Entropy Extrema 10.2 Single Variety Constituent Systems: Two Phases 10.3 Minimum Energy in an Adiabatically Isolated System 10.4 Relative Size of Phases and Energy Minimum 10.4.1 Specific Internal Energy of Two Phases Is Equal 10.5 Maximum Entropy in an Adiabatically Isolated System 10.6 Relative Size of Phases and Entropy Maximum 10.6.1 Specific Entropy of Two Phases Is Equal 10.7 Legendre Transformations 10.8 Helmholtz Free Energy 10.8.1 Helmholtz Thermodynamic Potential 10.8.2 Clausius Inequality in Differential Form 10.8.3 Maximum Possible Work 10.8.4 Helmholtz Free Energy Is Decreased 10.8.5 Helmholtz Free Energy: Extremum Principle 10.8.6 Helmholtz Free Energy: Relative Size of Phases 10.8.7 Specific Helmholtz Free Energy Is Equal for Different Phases 10.9 Gibbs Free Energy 10.9.1 Maximum Available Work: Constant t and p 10.10 Decrease in Gibbs Free Energy 10.10.1 The Pd V Work 10.10.2 Gibbs Free Energy: Extremum Principle 10.10.3 Gibbs Potential Minimum: Relative Size of Phases 10.10.4 Specific Gibbs Free Energy: Equality for Different Phases 10.11 Enthalpy: Remark 10.12 Heat of Transformation 10.13 Thermodynamic Potentials: s,f,g, and h 10.14 Characteristic Equations 10.14.1 Helmholtz Potential to Internal Energy 10.14.2 Gibbs Potential to Enthalpy 10.15 Maxwell Relations 10.16 Metastable Equilibrium 10.17 The Clausius–Clapeyron Differential Equation 10.18 Gibbs Phase Rule 10.18.1 MultiPhase, Multiconstituent Systems 10.19 Phase Equilibrium Relationships 10.19.1 Phase Rule 10.20 The Variance 10.20.1 Invariant Systems 10.20.2 Monovariant Systems 10.21 Phase Rule for Systems with Chemical Reactions References 11 Statistical Thermodynamics, the Third Law 11.1 Boltzmann–Maxwell–Gibbs Ideas and Helmholtz Free Energy 11.2 Noninteracting Classical Systems: Monatomic Perfect Gas in Three Dimensions 11.2.1 Partition Function: Classical Monatomic Perfect Gas in Three Dimensions 11.2.2 Monatomic Perfect Gas: Thermodynamic Potentials 11.3 Same Monatomic Perfect Gas at Different Pressure: Changes Due to Isothermal Mixing 11.3.1 Change in the Entropy Due to Mixing 11.4 Different Monatomic Ideal Gases: Mixed at Same Temperature 11.4.1 Thermodynamic Potentials 11.4.2 Gibbs Paradox 11.5 Perfect Gas of Classical Diatoms 11.5.1 Noninteracting Free Diatoms 11.5.2 Experimental Observation of Specific Heat 11.5.3 Center of Mass: Motion of and Around 11.5.4 Center of Mass: Translational Motion 11.6 Transformation to Spherical Coordinates: Classical Diatom with Stationary Center of Mass 11.7 Diatom with Stiff Bond: Rotational Kinetic Energy 11.7.1 Diatoms with Free Bonds 11.8 Classical Diatoms: High Temperature 11.9 Simple Oscillators: Anharmonic 11.10 Classical Dipole Pairs: Average Energy and Force 11.10.1 Distribution Factor and Thermal Average 11.10.2 Average Force Between a Pair 11.11 Langevin Paramagnetism: Classical Picture 11.11.1 Langevin Paramagnetism: Statistical Average 11.11.2 Langevin Paramagnetism: High Temperature 11.11.3 Langevin Susceptibility 11.11.4 Langevin Paramagnetism: Low Temperature 11.12 Extremely Relativistic Monatomic Ideal Gas 11.13 Hamiltonian: Gas with Interaction 11.14 Mayer\'s Cluster Expansion: Partition Function 11.15 Hard-Core Interaction 11.16 Lennard-Jones Potential 11.16.1 Attractive Potential 11.17 Quantum Mechanics: Cursory Remark 11.18 Canonical Partition Function 11.19 Quantum Particles 11.19.1 Quantum Particles: Motion in One Dimension 11.20 Classical Coquantum Gas 11.21 Noninteracting Particles: Classical Coquantum Versus Quantum Statistics 11.22 Quasiclassical Statistical Thermodynamics of Rigid Quantum Diatoms 11.23 Heteronuclear Diatoms: Rotational Motion 11.24 Partition Function: Quantum 11.25 Partition Function: Analytical Treatment 11.26 Thermodynamic Potential: Low Temperature 11.26.1 Thermodynamic Potential: High Temperature 11.27 Homonuclear Diatoms: Rotational Motion 11.27.1 Homonuclear Diatoms: Very High Temperature 11.27.2 Homnuclear Diatoms: Very Low and Intermediate Temperature 11.28 Diatoms with Vibrational Motion 11.29 Quantum-Statistical Treatment: Quasiclassical 11.30 Langevin Paramagnet: Quantum-Statistical Picture 11.31 Helmholtz Potential and Partition Function 11.32 System Entropy: High Temperature 11.33 Internal Energy 11.34 Specific Heat: General Temperature 11.34.1 Specific Heat: High Temperature 11.34.2 Specific Heat: Low Temperature 11.34.3 Langevin Paramagnet: Classical Statistical Picture 11.35 Adiabatic Demagnetization: Very Low Temperatures 11.36 Third Law: Nernst\'s Heat Theorem 11.37 Negative Temperatures 11.38 Grand Canonical Ensemble: Classical Systems 11.38.1 Grand Canonical Ensemble: Partition Function 11.39 Quantum States: Statistics 11.40 Fermi–Dirac: Noninteracting System 11.40.1 Fermi–Dirac: Single-State Partition Function 11.41 Bose–Einstein: Noninteracting System 11.41.1 Bose–Einstein: Chemical Potential Always Negative 11.41.2 Bose–Einstein: Partition Function 11.42 Fermi–Dirac and Bose–Einstein Systems 11.42.1 Pressure, Internal Energy, and Chemical Potential 11.43 Perfect Fermi–Dirac System 11.43.1 Weakly-Degenerate Fermi–Dirac System 11.44 Virial Expansion for a Perfect Fermi–Dirac Gas 11.45 Highly or Partially-Degenerate Fermi–Dirac 11.45.1 Complete Degeneracy: Zero Temperature 11.45.2 Partial Degeneracy: Finite but Low Temperature 11.46 Thermodynamic Potentials 11.47 Pauli Paramagnetism 11.47.1 Pauli Paramagnetism: Zero Temperature 11.47.2 Pauli Paramagnetism: Finite Temperature 11.47.3 Pauli Paramagnetism: Very High Temperature 11.48 Hand-Waving Argument: Specific Heat 11.48.1 Hand-Waving Argument: Zero Temperature Pauli Paramagnetism 11.48.2 Hand-Waving Argument: Pauli Paramagnetism at Finite Temperature 11.49 Landau Diamagnetism 11.50 Richardson Effect: Thermionic Emission 11.50.1 Richardson Effect: Quasiclassical Statistics 11.51 Bose–Einstein Gas: Low Density, High Temperature 11.51.1 Bose–Einstein Gas: Grand Potential 11.51.2 Bose–Einstein Gas: Three Dimensions 11.51.3 Bose–Einstein Gas: Condensation Temperature T<=Tc 11.51.4 Bose–Einstein Gas: Pressure and Internal Energy 11.51.5 Bose–Einstein Gas: Degenerate Ideal Gas 11.52 Degenerate Regime: Specific Heat 11.52.1 Degenerate Regime: State Functions 11.53 Bose–Einstein Gas: Nondegenerate Regime Specific Heat 11.54 Bose–Einstein Condensation: In δ-Dimensions 11.55 Critical Temperature: Bose–Einstein Gas 11.55.1 Temperature Dependence of Condensate: Bose–Einstein Gas 11.55.2 Pressure and Internal Energy of Condensate: Bose–Einstein Gas 11.56 Black Body Radiation: Thermodynamic Consideration 11.56.1 Black Body Radiation: Chemical Potential Zero 11.56.2 Black Body Radiation: Energy 11.56.3 Black Body Radiation: Pressure 11.56.4 Black Body Radiation: Internal Energy 11.56.5 Black Body Radiation: Other Thermodynamic Potentials 11.57 Phonons: In a Continuum 11.57.1 Phonons in Lattices 11.57.2 Phonons: Einstein Approximation 11.57.3 Phonons: Debye Approximation References 12 Second-Order Phase Transitions 12.1 Landau Theory 12.1.1 Ginzburg Contribution References 13 Cooper Pair 13.1 Fermi Sea 13.1.1 Classical Hamiltonian 13.1.2 Quantum Hamiltonian 13.1.3 Center-of-Mass Coordinates 13.2 Schrödinger Equation 13.3 Solution of Schrödinger Equation 13.3.1 No Center-of-Mass Motion 13.4 Binding Energy References 14 Bogolyubov Representation 14.1 Hamiltonian and Solution 14.2 Quasiparticles References 15 London and London Theory 15.1 Electricity and Magnetism 15.2 Perfect Conductivity 15.3 One-Dimensional Theory 15.4 Arbitrary Change of Theory: Meissner Effect References 16 Superconductivity 16.1 Theory 16.2 [HBCS]MFA Hamiltonian 16.3 Fermionic Quasiparticles 16.4 Procedure to Invert 16.5 Nondiagonal Hamiltonian: Elimination of Terms 16.6 Transformation of Hnondiagonal 16.7 Evaluation of Diagonal Terms 16.8 Fermi Surface 16.9 Fermi Sea: Above and Within 16.10 Gap Function and Solutions 16.11 Critical Temperature Tc 16.12 Debye Potential hΩD 16.13 Isotope Effect 16.14 Specific Heat Near Tc 16.15 Specific Heat: Calculation of Jump in 16.16 A Universal Ratio 16.17 Another Universal Ratio and Result at Zero Temperature References A Large Numbers. The Most Probable State A.1 Random Number Generator A.2 Binomial Expansion A.3 Large Number of Calls A.3.1 Remark: A Gaussian Distribution B Moments of the Distribution Function: Remark B.1 Moments of the Gaussian Distribution Function B.1.1 Unnormalized Moments: Gaussian Distribution B.1.2 Normalized Moments of the Gaussian Distribution Function C Normalized Moments of the Exact Distribution Function for General Occupancy C.1 Exact Second Normalized Moment C.2 Exact Third–Sixth Normalized Moments C.2.1 The Third Moment C.2.2 The Fourth Moment C.2.3 Calculation of the Fifth and Sixth Normalized Moments C.3 Concluding Remark C.4 Summary D Perfect Gas Revisited D.1 Monatomic Perfect Gas D.1.1 Monatomic Perfect Gas: Pressure D.2 Classical Statistics: Boltzmann–Maxwell–Gibbs Distribution D.2.1 Energy in a Monatomic Perfect Gas E Second Law: Carnot Version Leads to Clausius Version E.1 A Carnot and an Ordinary Engine in Tandem F Positivity of the Entropy Increase: Equation (4.71) G Mixture of Van der Waals Gases H Positive-Definite Homogeneous Quadratic Form H.1 Positive Definiteness of 3x3 Quadratic Form H.2 Helpful Surprise I Thermodynamic Stability: Three Extensive Variables I.1 Energy Minimum Procedure: Intrinsic Stability I.2 The First Requirement for Intrinsic Stability I.3 The Second Requirement for Intrinsic Stability I.4 The Third Requirement For Intrinsic Stability I.5 Solved Problems J Massieu Transforms: The Entropy Representation J.1 Massieu Potential, M{v,u} J.1.1 Massieu Potential, M {v,1/t } J.1.2 Massieu Potential, M {p/t,u } J.1.3 Massieu Potential, M {p/t,1/t } K Integral (11.83) K.1 Average Force Between a Pair L Indistinguishable, Noninteracting Quantum Particles L.1 Quantum Statistics: Grand Canonical Partition Function M Landau Diamagnetism M.1 Multiplicity Factor: Landau Diamagnetism M.2 High Temperature: Landau Diamagnetism N Specific Heat for the B–E Gas O Bogolyubov Transformation: Inversion Procedure List of Problems and Proofs Scientists Index