دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [8 ed.]
نویسندگان: T. A. Brown
سری:
ISBN (شابک) : 1119640784, 9781119640783
ناشر: Wiley-Blackwell
سال نشر: 2020
تعداد صفحات: 433
[435]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 52 Mb
در صورت تبدیل فایل کتاب Gene Cloning and DNA Analysis: An Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی ژن و تجزیه و تحلیل DNA: مقدمه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نسخه هشتم که در سراسر جهان به عنوان متن مقدماتی استاندارد برای این حوزه مهم و هیجان انگیز مطالعه شناخته می شود، شبیه سازی ژن و تجزیه و تحلیل DNA: مقدمه، سنت برتری ایجاد شده توسط نسخه های قبلی را حفظ می کند. این کتاب جامع و معتبر، تمام موضوعات حیاتی برای درک شبیهسازی ژن را به روشی قابل دسترس بررسی میکند. یک طرح آسان برای دنبال کردن و کاربر پسند به صورت تمام رنگی در سراسر حجم ارائه شده است، که جذب مواد شفاف و در دسترس موجود در داخل را آسان می کند. شبیه سازی ژن و تجزیه و تحلیل DNA: مقدمه، ویرایش هشتم شامل پوشش به روز شده و گسترده ای از استراتژی های ویرایش ژن مانند CRISPR/Cas، فصل های بازنویسی شده در مورد توالی یابی DNA و مطالعات ژنوم، و همچنین مطالب جدید در مورد PCR بلادرنگ و تایپ جهش های بیماری های انسانی است. . بیش از 250 تصویر تمام رنگی برای زنده کردن محتوای جامع گنجانده شده است. این کتاب همچنین موضوعاتی مانند: استراتژیهای مورد استفاده توسط محققان و متخصصان صنعت برای جمعآوری توالیهای ژنومی روشهای توالییابی نسل بعدی و شرح کاربردهای آنها در مطالعه ژنومها و رونوشتها شامل استفاده و کاربرد استراتژیهای ویرایش ژن آمیختهسازی بین نئاندرتالها و شبیهسازی ژن هومو ساپینس است. و تجزیه و تحلیل DNA: یک مقدمه، ویرایش هشتم یک متن مقدماتی ارزشمند برای دانش آموزان در کلاس هایی مانند ژنتیک و ژنومیک، زیست شناسی مولکولی، بیوشیمی، ایمونولوژی و زیست شناسی کاربردی است. همچنین در قفسه کتاب های هر حرفه ای که مایل به بهبود درک خود از اصول شبیه سازی ژن یا تجزیه و تحلیل DNA هستند، تعلق دارد.
Known worldwide as the standard introductory text to this important and exciting area of study, Gene Cloning and DNA Analysis: An Introduction, 8th Edition preserves the tradition of excellence created by previous editions. Comprehensive and authoritative, the book explores all of the topics crucial to an understanding of gene cloning in an approachable way. An easy-to-follow and user-friendly layout is presented in full-color throughout the volume, making it simple to absorb the clear and accessible material contained within. Gene Cloning and DNA Analysis: An Introduction, 8th Edition contains updated and extended coverage of gene editing strategies like CRISPR/Cas, rewritten chapters on DNA sequencing and genome studies, as well as new material on real-time PCR and typing of human disease mutations. Over 250 full-color illustrations are included to bring to life the comprehensive content. The book also covers topics like: The strategies used by researchers and industry practitioners to assemble genome sequences Next generation sequencing methods and descriptions of their applications in studying genomes and transcriptomes Includes the use and application of gene editing strategies Interbreeding between Neanderthals and Homo Sapiens Gene Cloning and DNA Analysis: An Introduction, 8th Edition is an invaluable introductory text for students in classes like genetics and genomics, molecular biology, biochemistry, immunology, and applied biology. It also belongs on the bookshelves of every professional who desires to improve their understanding of the basics of gene cloning or DNA analysis.
Cover Title Page Copyright Page Contents in Brief Contents Preface to the Eighth Edition Part I The Basic Principles of Gene Cloning and DNA Analysis Chapter 1 Why Gene Cloning and DNA Analysis are Important 1.1 The early development of genetics 1.2 The advent of gene cloning and the polymerase chain reaction 1.3 What is gene cloning? 1.4 What is PCR? 1.5 Why gene cloning and PCR are so important 1.5.1 Obtaining a pure sample of a gene by cloning 1.5.2 PCR can also be used to purify a gene 1.6 How to find your way through this book Further reading Chapter 2 Vectors for Gene Cloning: Plasmids and Bacteriophages 2.1 Plasmids 2.1.1 Size and copy number 2.1.2 Conjugation and compatibility 2.1.3 Plasmid classification 2.1.4 Plasmids in organisms other than bacteria 2.2 Bacteriophages 2.2.1 The phage infection cycle 2.2.2 Lysogenic phages 2.2.3 Viruses as cloning vectors for other organisms Further reading Chapter 3 Purification of DNA from Living Cells 3.1 Preparation of total cell DNA 3.1.1 Growing and harvesting a bacterial culture 3.1.2 Preparation of a cell extract 3.1.3 Purification of DNA from a cell extract 3.1.4 Concentration of DNA samples 3.1.5 Measurement of DNA concentration 3.1.6 Other methods for the preparation of total cell DNA 3.2 Preparation of plasmid DNA 3.2.1 Separation on the basis of size 3.2.2 Separation on the basis of conformation 3.2.3 Plasmid amplification 3.3 Preparation of bacteriophage DNA 3.3.1 Growth of cultures to obtain a high titre 3.3.2 Preparation of non-lysogenic phages 3.3.3 Collection of phages from an infected culture 3.3.4 Purification of DNA from phage particles 3.3.5 Purification of M13 DNA causes few problems Further reading Chapter 4 Manipulation of Purified DNA 4.1 The range of DNA manipulative enzymes 4.1.1 Nucleases 4.1.2 Ligases 4.1.3 Polymerases 4.1.4 DNA modifying enzymes 4.2 Enzymes for cutting DNA – restriction endonucleases 4.2.1 The discovery and function of restriction endonucleases 4.2.2 Type II restriction endonucleases cut DNA at specific nucleotide sequences 4.2.3 Blunt ends and sticky ends 4.2.4 The frequency of recognition sequences in a DNA molecule 4.2.5 Performing a restriction digest in the laboratory 4.2.6 Analysing the result of restriction endonuclease cleavage 4.2.7 Estimation of the sizes of DNA molecules 4.2.8 Mapping the positions of different restriction sites in a DNA molecule 4.2.9 Special gel electrophoresis methods for separating larger molecules 4.3 Ligation – joining DNA molecules together 4.3.1 The mode of action of DNA ligase 4.3.2 Sticky ends increase the efficiency of ligation 4.3.3 Putting sticky ends onto a blunt-ended molecule 4.3.4 Blunt-end ligation with a DNA topoisomerase Further reading Chapter 5 Introduction of DNA into Living Cells 5.1 Transformation – the uptake of DNA by bacterial cells 5.1.1 Not all species of bacteria are equally efficient at DNA uptake 5.1.2 Preparation of competent E. coli cells 5.1.3 Selection for transformed cells 5.2 Identification of recombinants 5.2.1 Recombinant selection with pBR322 – insertional inactivation of an antibiotic resistance gene 5.2.2 Insertional inactivation does not always involve antibiotic resistance 5.3 Introduction of phage DNA into bacterial cells 5.3.1 Transfection 5.3.2 In vitro packaging of cloning vectors 5.3.3 Phage infection is visualized as plaques on an agar medium 5.3.4 Identification of recombinant phages 5.4 Introduction of DNA into non-bacterial cells 5.4.1 Transformation of individual cells 5.4.2 Transformation of whole organisms Further reading Chapter 6 Cloning Vectors for E. coli 6.1 Cloning vectors based on E. coli plasmids 6.1.1 The nomenclature of plasmid cloning vectors 6.1.2 The useful properties of pBR322 6.1.3 The pedigree of pBR322 6.1.4 More sophisticated E. coli plasmid cloning vectors 6.2 Cloning vectors based on bacteriophage 6.2.1 Natural selection was used to isolate modified that lack certain restriction sites 6.2.2 Segments of the genome can be deleted without impairing viability 6.2.3 Insertion and replacement vectors Replacement vectors 6.2.4 Cloning experiments with insertion or replacement vectors 6.2.5 Long DNA fragments can be cloned using a cosmid 6.2.6 and other high-capacity vectors enable genomic libraries to be constructed 6.3 Cloning vectors for synthesis of single-stranded DNA 6.3.1 Vectors based on M13 bacteriophage 6.3.2 Hybrid plasmid–M13 vectors 6.4 Vectors for other bacteria Further reading Chapter 7 Cloning Vectors for Eukaryotes 7.1 Vectors for yeast and other fungi 7.1.1 Selectable markers for the 2 μm plasmid 7.1.2 Vectors based on the 2 μm plasmid – yeast episomal plasmids 7.1.3 A YEp may insert into yeast chromosomal DNA 7.1.4 Other types of yeast cloning vector 7.1.5 Artificial chromosomes can be used to clone long pieces of DNA in yeast 7.1.6 Vectors for other yeasts and fungi 7.2 Cloning vectors for higher plants 7.2.1 Agrobacterium tumefaciens – nature’s smallest genetic engineer 7.2.2 Cloning genes in plants by direct gene transfer 7.2.3 Attempts to use plant viruses as cloning vectors 7.3 Cloning vectors for animals 7.3.1 Cloning vectors for insects 7.3.2 Cloning in mammals Further reading Chapter 8 How to Obtain a Clone of a Specific Gene 8.1 The problem of selection 8.1.1 There are two basic strategies for obtaining the clone you want 8.2 Direct selection 8.2.1 Marker rescue extends the scope of direct selection 8.2.2 The scope and limitations of marker rescue 8.3 Identification of a clone from a gene library 8.3.1 Gene libraries 8.4 Methods for clone identification 8.4.1 Complementary nucleic acid strands hybridize to each other 8.4.2 Colony and plaque hybridization probing 8.4.3 Examples of the practical use of hybridization probing 8.4.4 Identification methods based on detection of the translation product of the cloned gene Further reading Chapter 9 The Polymerase Chain Reaction 9.1 PCR in outline 9.2 PCR in more detail 9.2.1 Designing the oligonucleotide primers for a PCR 9.2.2 Working out the correct temperatures to use 9.3 After the PCR: studying PCR products 9.3.1 Gel electrophoresis of PCR products 9.3.2 Cloning PCR products 9.4 Real-time PCR 9.4.1 Carrying out a real-time PCR experiment 9.4.2 Real-time PCR enables the amount of starting material to be quantified 9.4.3 Melting curve analysis enables point mutations to be identified Further reading Part II The Applications of Gene Cloning and DNA Analysis in Research Chapter 10 Sequencing Genes and Genomes 10.1 Chain-termination DNA sequencing 10.1.1 Chain-termination sequencing in outline 10.1.2 Not all DNA polymerases can be used for sequencing 10.1.3 Chain-termination sequencing with Taq polymerase 10.1.4 Limitations of chain-termination sequencing 10.2 Next-generation sequencing 10.2.1 Preparing a library for an Illumina sequencing experiment 10.2.2 The sequencing phase of an Illumina experiment 10.2.3 Ion semiconductor sequencing 10.2.4 Third-generation sequencing 10.2.5 Next-generation sequencing without a DNA polymerase 10.2.6 Directing next-generation sequencing at specific sets of genes 10.3 How to sequence a genome 10.3.1 Shotgun sequencing of prokaryotic genomes 10.3.2 Sequencing of eukaryotic genomes Further reading Chapter 11 Studying Gene Expression and Function 11.1 Studying the RNA transcript of a gene 11.1.1 Detecting the presence of a transcript in an RNA sample 11.1.2 Transcript mapping by hybridization between gene and RNA 11.1.3 Transcript analysis by primer extension 11.1.4 Transcript analysis by PCR 11.2 Studying the regulation of gene expression 11.2.1 Identifying protein binding sites on a DNA molecule 11.2.2 Identifying control sequences by deletion analysis 11.3 Identifying and studying the translation product of a cloned gene 11.3.1 HRT and HART can identify the translation product of a cloned gene 11.3.2 Analysis of proteins by in vitro mutagenesis Further reading Chapter 12 Studying Genomes 12.1 Locating the genes in a genome sequence 12.1.1 Locating protein-coding genes by scanning a genome sequence 12.1.2 Gene location is aided by homology searching 12.1.3 Locating genes for noncoding RNA transcripts 12.1.4 Identifying the binding sites for regulatory proteins in a genome sequence 12.2 Determining the function of an unknown gene 12.2.1 Assigning gene functions by computer analysis 12.2.2 Assigning gene function by experimental analysis 12.3 Genome browsers Further reading Chapter 13 Studying Transcriptomes and Proteomes 13.1 Studying transcriptomes 13.1.1 Studying transcriptomes by microarray or chip analysis 13.1.2 Studying transcriptomes by RNA sequencing 13.2 Studying proteomes 13.2.1 Protein profiling 13.2.2 Studying protein–protein interactions Further reading Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology Chapter 14 Production of Protein from Cloned Genes 14.1 Special vectors for expression of foreign genes in E. coli 14.1.1 The promoter is the critical component of an expression vector 14.1.2 Cassettes and gene fusions 14.2 General problems with the production of recombinant protein in E. coli 14.2.1 Problems resulting from the sequence of the foreign gene 14.2.2 Problems caused by E. coli 14.3 Production of recombinant protein by eukaryotic cells 14.3.1 Recombinant protein from yeast and filamentous fungi 14.3.2 Using animal cells for recombinant protein production 14.3.3 Pharming – recombinant protein from live animals and plants Further reading Chapter 15 Gene Cloning and DNA Analysis in Medicine 15.1 Production of recombinant pharmaceuticals 15.1.1 Recombinant insulin 15.1.2 Synthesis of human growth hormones in E. coli 15.1.3 Recombinant factor VIII 15.1.4 Synthesis of other recombinant human proteins 15.1.5 Recombinant vaccines 15.2 Identification of genes responsible for human diseases 15.2.1 How to identify a gene for a genetic disease 15.2.2 Genetic typing of disease mutations 15.3 Gene therapy 15.3.1 Gene therapy for inherited diseases 15.3.2 Gene therapy and cancer 15.3.3 The ethical issues raised by gene therapy Further reading Chapter 16 Gene Cloning and DNA Analysis in Agriculture 16.1 The gene addition approach to plant genetic engineering 16.1.1 Plants that make their own insecticides 16.1.2 Herbicide-resistant crops 16.1.3 Improving the nutritional quality of plants by gene addition 16.1.4 Other gene addition projects 16.2 Gene subtraction 16.2.1 Antisense RNA and the engineering of fruit ripening in tomato 16.2.2 Other examples of the use of antisense RNA in plant genetic engineering 16.3 Gene editing with a programmable nuclease 16.3.1 Gene editing of phytoene desaturase in rice 16.3.2 Editing of multiple genes in a single plant 16.3.3 Future developments in gene editing of plants 16.4 Are GM plants harmful to human health and the environment? 16.4.1 Safety concerns with selectable markers 16.4.2 The possibility of harmful effects on the environment Further reading Chapter 17 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 17.1 DNA analysis in the identification of crime suspects 17.1.1 Genetic fingerprinting by hybridization probing 17.1.2 DNA profiling by PCR of short tandem repeats 17.2 Studying kinship by DNA profiling 17.2.1 Related individuals have similar DNA profiles 17.2.2 DNA profiling and the remains of the Romanovs 17.3 Sex identification by DNA analysis 17.3.1 PCRs directed at Y chromosome-specific sequences 17.3.2 PCR of the amelogenin gene 17.4 Archaeogenetics – using DNA to study human prehistory 17.4.1 The origins of modern humans 17.4.2 DNA can also be used to study prehistoric human migrations Further reading Glossary EULA