دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vincenzo Vullo
سری:
ISBN (شابک) : 3030386317, 9783030386313
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 691
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Gears: Volume 2: Analysis of Load Carrying Capacity and Strength Design (Springer Series in Solid and Structural Mechanics, 11) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چرخ دنده ها: جلد 2: تجزیه و تحلیل ظرفیت تحمل بار و طراحی مقاومت (سری فنر در مکانیک جامدات و سازه، 11) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی طراحی هندسی و سینماتیکی انواع چرخ دندههایی میپردازد که معمولاً در کاربردهای عملی مورد استفاده قرار میگیرند، و همچنین مشکلات مربوط به فرآیند برش آنها را در نظر میگیرد. چرخدندههای استوانهای و مارپیچ ابتدا در نظر گرفته میشوند و مقادیر هندسی اصلی آنها را در پرتو مشکلات تداخلی و زیر بریدگی و همچنین پارامترهای سینماتیکی مربوطه تعیین میکنند. توجه ویژه ای به تغییر پروفیل این نوع چرخ دنده ها می شود که توسط برش قفسه ای یا برش پینیون-رک ایجاد می شود. در میان چیزهای دیگر، دندانهای با تغییر پروفیل به شما امکان میدهد تا به شکل دندانهایی با استحکام بیشتر و لغزش خاص متعادلتر، و همچنین برای جلوگیری از تداخل یا برش کاری، تعداد دندانها را زیر حداقل یک کاهش دهید. این جنبههای بسیار مهم طراحی هندسی- سینماتیکی چرخدندههای استوانهای و مارپیچ تعمیم داده میشوند و به سایر انواع چرخدندههای مورد بررسی که معمولاً در کاربردهای عملی استفاده میشوند، مانند چرخدندههای مخروطی مستقیم تعمیم داده میشوند. چرخ دنده های مارپیچ متقاطع؛ چرخ دنده های کرمی؛ چرخ دنده های اریب مارپیچ و هیپووئید. در نهایت، قطارهای دنده معمولی، قطارهای دنده سیاره ای و درایوهای چرخ دنده صورت مورد بحث قرار می گیرند.
این پیشرفته ترین راهنمای مرجع برای وضعیت هنر در مهندسی دنده است.
موضوعات از منظر تئوریک مورد بررسی قرار می گیرند، اما به گونه ای که از پدیده های فیزیکی که مشخصه انواع چرخ دنده های مورد بررسی است، غافل نشوند.</ p>
راهحلهای تحلیلی و عددی به گونهای فرمولبندی شدهاند که نه تنها برای دانشگاهیان، بلکه برای طراحانی که با مشکلات مهندسی واقعی مربوط به چرخ دندهها سروکار دارند نیز مورد توجه قرار گیرد.
This book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed.
This is the most advanced reference guide to the state of the art in gear engineering.
Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined.
The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
Aphorism Preface Contents Symbols, Notations and Units 1 Load Carrying Capacity of Spur and Helical Gears: Influence Factors and Load Analysis 1.1 Introduction 1.2 Application Factor, KA 1.3 Dynamic Factor, Kv 1.3.1 Generality 1.3.2 Method A for Determination of Kv - A 1.3.3 Method B for Determination of Kv - B 1.3.4 Method C for Determination of Kv - C 1.4 Face Load Factors, KHβ and KFβ 1.4.1 Generality 1.4.2 Method A for Determination of KHβ - A and KFβ - A 1.4.3 Method B for Determination of KHβ - B and KFβ - B 1.4.4 Method C for Determination of KHβ - C and KFβ - C 1.5 Transverse Load Factors, KHα and KFα 1.5.1 Generality 1.5.2 Method B for Determination of KHα - B and KFα - B 1.5.3 Running-in Allowance for a Gear Pair 1.6 Tooth Stiffness Parameters 1.7 Load Distribution on Pairs of Teeth in Simultaneous Meshing 1.8 Variable Load and Load Spectrum 1.9 Determination of Application Factor, KA, from a Given Torque Spectrum References 2 Surface Durability (Pitting) of Spur and Helical Gears 2.1 General Survey 2.2 Pitting Damage and Safety Factor 2.3 Theoretical Basis of Surface Durability Calculations 2.4 Surface and Subsurface Stress States 2.5 Other Considerations on the Pitting Generation 2.6 Some Brief Reminder on the Elastohydrodynamic Lubrication Theory 2.7 Conditions for EHD Lubrication, and Subsurface and Surface Fatigue Damage 2.8 Calculation of Surface Durability: ISO Basic Formulae 2.9 Influence Factors of the Hertzian Stress 2.9.1 Zone Factor, ZH 2.9.2 Single Pair Tooth Contact Factors, ZB andZD 2.9.3 Elasticity Factor, ZE 2.9.4 Contact Ratio Factor, Zε 2.9.5 Helix Angle Factor, Zβ 2.10 Influence Factors of the Permissible Contact Stress 2.10.1 Allowable Stress Numbers for Contact and Bending 2.10.2 Life Factor, ZNT 2.10.3 Influence Factors of Lubricant Film, ZL , Zv andZR 2.10.4 Work Hardening Factor, ZW 2.10.5 Size Factor, ZX 2.10.6 Minimum Safety Factor, SHmin 2.10.7 Actual S-N Damage Curves, Obtained by Calculation 2.11 Calculation Examples References 3 Tooth Bending Strength of Spur and Helical Gears 3.1 Introduction and Brief History 3.2 Fatigue Tooth Root Breakage and Safety Factor 3.3 Lewis Analysis 3.4 Stress State at the Tooth Root 3.5 30° Tangent and Load Application at the Outer Point of Single Pair Gear Tooth Contact 3.6 Calculation of Tooth Bending Strength: ISO Basic Formulae 3.7 Influence Factors for the Nominal Tooth Stress 3.7.1 Stress Correction Factor, YS 3.7.2 Helix Angle Factor, Yβ 3.7.3 Rim Thickness Factor, YB 3.7.4 Deep Tooth Factor, YDT 3.8 Influence Factors of the Permissible Tooth Root Stress 3.8.1 Allowable Stress Numbers for Contact and Bending 3.8.2 Life Factor, YNT 3.8.3 Relative Notch Sensitivity Factor, yδrelT 3.8.4 Relative Surface Factor, YRrelT 3.8.5 Size Factor, YX 3.8.6 Minimum Safety Factor, SFmin 3.8.7 Actual S-N Damage Curves, Obtained by Calculation 3.9 Design Analysis to Determine the Module 3.10 Mean Stress Influence Factor, YM 3.11 Calculation Examples References 4 Load Carrying Capacity of Bevel Gears: Factors Influencing Load Conditions 4.1 Introduction 4.2 Calculation of Virtual Cylindrical Gears with Sub-method B1 4.3 Calculation of Virtual Cylindrical Gears with Method B2 4.4 Application Factor, KA 4.5 Dynamic Factor, Kv 4.5.1 Generality 4.5.2 Method A for Determination of Kv - A 4.5.3 Method B for Determination of Kv - B 4.5.4 Method C for Determination of Kv - C 4.6 Face Load Factors, KHβ and KFβ 4.6.1 Generality 4.6.2 Method C for Determination of the Face Load Factors, KHβ - C and KFβ - C 4.7 Transverse Load Factors, KHα and KFα 4.7.1 Generality 4.7.2 Method B for Determination of the Transverse Load Factors, KHα - B and KFα - B 4.7.3 Method C for Determination of the Transverse Load Factors, KHα- C and KFα- C References 5 Surface Durability (Pitting) of Bevel Gears 5.1 General Aspects on Pitting Damage 5.2 Calculation of Surface Durability: ISO Basic Formulae of Method B1 5.3 Contact Stress Factors for Method B1 5.4 Permissible Contact Stress Factors for Method B1 5.5 Calculation of Surface Durability: ISO Basic Formulae of Method B2 5.6 Contact Stress Factors for Method B2 5.7 Common Factors for Method B1 and Method B2: Factors for Contact Stress and Permissible Contact Stress 5.7.1 Elasticity Factor, ZE 5.7.2 Lubricant Film Influence Factors, ZL, Zv, ZR 5.7.3 Work Hardening Factor, ZW 5.7.4 Life Factor, ZNT 5.8 Calculation Examples References 6 Tooth Root Strength of Bevel Gears 6.1 Introduction 6.2 Calculation of Tooth Root Strength: ISO Basic Formulae of Method B1 6.3 Tooth Root Stress Factors for Method B1 6.3.1 Tooth Form Factor, YFa 6.3.2 Stress Correction Factor, YSa 6.3.3 Contact Ratio Factor, Yε 6.3.4 Bevel Spiral Angle Factor, YBS 6.3.5 Load Sharing Factor, YLS 6.4 Permissible Tooth Root Stress Factors for Method B1 6.4.1 Relative Surface Condition Factor, YRrelT - B1 6.4.2 Relative Notch Sensitivity Factor, Yδ,relT - B1 6.5 Calculation of Tooth Root Strength: ISO Basic Formulae of Method B2 6.6 Tooth Root Stress Factors for Method B2 6.6.1 Bending Strength Geometry Factor, YJ 6.6.2 Additional Tooth Strength Parameters for Bevel and Hypoid Gears 6.6.3 Root Stress Adjustment Factor, YA 6.7 Permissible Tooth Root Stress Factors for Method B2 6.8 Common Factors for Method B1 and Method B2: Factors for Permissible Tooth Root Stress 6.8.1 Size Factor, YX 6.8.2 Life Factor, YNT 6.9 Calculation Examples References 7 Scuffing Load Carrying Capacity of Cylindrical, Bevel and Hypoid Gears: Flash Temperature Method 7.1 Introduction 7.2 Transition Diagram and Coefficient of Friction at Incipient Scuffing 7.3 Contact Temperature 7.3.1 General Relationship 7.3.2 Interfacial Bulk Temperature and Overall Bulk Temperature 7.3.3 Flash Temperature 7.4 Coefficient of Friction 7.5 Position of an Arbitrary Point on the Line of Action 7.5.1 Cylindrical Gears 7.5.2 Bevel Gears 7.6 Optimum Profile Modification and Approach Factor 7.7 Load Sharing Factor, XΓ 7.7.1 General Premise 7.7.2 Cylindrical Spur Gears 7.7.3 Buttressing Factor, Xbut, Γ 7.7.4 Cylindrical Helical Gears 7.7.5 Wide and Narrow Bevel Gears 7.8 Scuffing Temperature and Safety Factor 7.9 Cold Scuffing Load Carrying Capacity 7.10 Some In-depth Information on the Warm Scuffing 7.11 Empirical Formulae References 8 Scuffing Load Carrying Capacity of Cylindrical, Bevel and Hypoid Gears: Integral Temperature Method 8.1 Introduction 8.2 Mean Coefficient of Friction 8.3 Other Common Influence Factors 8.4 Scuffing Safety Factor and Permissible Integral Temperature 8.5 Integral Temperature of Cylindrical Gears 8.6 Integral Temperature of Bevel Gears 8.7 Integral Temperature of Hypoid Gears 8.8 Virtual Crossed Axes Helical Gears 8.9 Scuffing Integral Temperature 8.10 Calculation Examples 8.11 Flash Temperature or Integral Temperature? References 9 Wear Load Capacity Rating of Gears 9.1 Introduction 9.2 Generation Mechanism of Abrasive Wear and Influences 9.3 Classical Wear Theories 9.4 Assessment of Tooth Wear Linear Progression 9.5 Additional Considerations on the Gear Wear References 10 Micropitting Load Capacity of Spur and Helical Gears 10.1 Generality 10.2 Issues to Be Solved for a Reliable Calculation of Micropitting Load Carrying Capacity of Cylindrical Spur and Helical Gears 10.3 Ideal Characteristics of a General Micropitting Model for Gears 10.4 A Tribological-Dynamic Model for Cylindrical Spur Gears 10.4.1 Rigid-Body Dynamic Sub-Model 10.4.2 EHL-Tribological Sub-model 10.4.3 Tribological-Dynamic Model 10.5 Other Interesting Contributions for a General Micropitting Model of Spur Gears 10.5.1 Three-Dimensional Contact Sub-model 10.5.2 Multi-axial Fatigue Sub-model 10.6 Calculation of Micropitting Load Carrying Capacity of Cylindrical Spur and Helical Gears: ISO Basic Formulae 10.7 Permissible Specific Lubricant Film Thickness, λGFP 10.8 Local Specific Lubricant Film Thickness, λGF, Y 10.8.1 Normal Radius of Relative Curvature, ρn,Y, at Point Y 10.8.2 Material Parameter, GM 10.8.3 Local Velocity Parameter, UY 10.8.4 Local Load Parameter, WY 10.8.5 Local Sliding Parameter, SGF,Y 10.8.6 Load Sharing Factor, XY 10.8.7 Local Buttressing Factor, Xbut,Y 10.8.8 Cylindrical Helical Gears 10.8.9 Local Contact Temperature, B,Y 10.9 Calculation Examples 10.10 Topography and Texture of Surfaces 10.10.1 Basic Concepts 10.10.2 Main Surfaces 10.10.3 Surface Texture Parameters 10.10.4 Function Related Parameters 10.10.5 Volume Parameters 10.10.6 Roughness References 11 Tooth Flank Breakage Load Carrying Capacity of Spur and Helical Gears 11.1 Introduction 11.2 TFF and TIFF Failure Mechanisms 11.3 Fundamentals on the TIFF and TFF Calculation Methods 11.4 An Interesting Method of TIFF and TFF Risk Evaluation 11.4.1 General Concepts and Main Assumptions 11.4.2 Hardness Profile and Material Properties 11.4.3 Residual Stresses 11.4.4 Fatigue Crack Initiation Criterion 11.5 A Refined TFF-Risk Assessment Model 11.6 A Practical-Oriented Calculation Approach for TFF-Risk Assessment 11.7 Some Insights on the Multiaxial Stress State that Originates Crack Initiation for TIFF and TFF 11.7.1 General Concepts 11.7.2 Weakest Link Theory and Classical Multiaxial Criteria 11.7.3 A General Fatigue Criterion for Multiaxial Stress 11.7.4 Modification of the Shear Stress Intensity Hypothesis 11.8 Calculation of Tooth Flank Fracture Load Carrying Capacity of Cylindrical Spur and Helical Gears: ISO Basic Formulae 11.8.1 General 11.8.2 ISO Formulae for TFF Assessment 11.9 Local Material Strength 11.9.1 Hardness Depth Profile References Appendix Load Carrying Capacity of Worm Gears A.1 General Information A.2 Security Against the Main Types of Damage A.2.1 Safety Against Wear A.2.2 Safety Against Surface Durability (Pitting) A.2.3 Security Against Shear Tooth Breakage A.2.4 Security Against Worm Shaft Deflection A.2.5 Security Against Working Temperature A.2.5.1 Security Against Working Temperature for Splash Lubrication A.2.5.2 Security Against Working Temperature for Oil Spray Lubrication A.3 Security Against Other Types of Damage References Index of Standards Author Index Subject Index