دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Andrzej Buras
سری: Cambridge Monographs on Particle Physics, Nuclear Physics an
ISBN (شابک) : 1107034035, 9781107034037
ناشر: Cambridge University Press
سال نشر: 2020
تعداد صفحات: 739
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Gauge Theories of Weak Decays (Cambridge Monographs on Particle Physics, Nuclear Physics an) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه های سنجش ضعف () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface Acknowledgments List of Abbreviations Introduction Grand View of the Standard Model Grand View of New Physics The Grand View of the Expedition and the Strategy Introducing Main Players How to Use This Book Optimally Part I Basics of Gauge Theories 1 Fundamentals 1.1 Preliminaries 1.2 Lagrangians for Scalar Fields 1.3 First Encounter with Symmetries 1.4 Checking the Symmetries of Scalar Lagrangians 1.5 Promotion of a Global U(1) Symmetry to a Local U(1) Symmetry 1.6 A Closer Look at the U(1) Gauge Theory 1.7 Nonabelian Global Symmetries 1.8 Promotion of a Global Nonabelian Symmetry to a Local One 1.9 Lagrangians for Fermions 1.10 Spontaneous Symmetry Breakdown (SSB) 1.11 Higgs Mechanism Part II The Standard Model 2 The Standard Model of Electroweak and Strong Interactions 2.1 Particle Content and Gauge Group of the SM 2.2 Short Overview: Lagrangian of the SM 2.3 Spontaneous Symmetry Breakdown in the SM 2.4 Gauge Boson Self-Interactions 2.5 Flavor Structure of the SM 2.6 Lepton Flavor Violation 2.7 Quantumchromodynamics (QCD) 2.8 Final Remarks Part III Weak Decays in the Standard Model 3 Weak Decays at Tree Level 3.1 Muon Decay 3.2 Leptonic Decays of Charged Mesons 3.3 Semileptonic Decays of Charged Mesons 3.4 The Determination of |Vcb | and |Vub | 3.5 Leptonic and Semileptonic Decays of Neutral Mesons 3.6 Nonleptonic Decays of Mesons 3.7 Summary and Motivation 4 Technology beyond Trees 4.1 Loop Calculations 4.2 Renormalization 4.3 Renormalization Group Equations 5 Short-Distance Structure of Weak Decays 5.1 Operator Product Expansion in Weak Decays 5.2 Current-Current Operators beyond Leading Order 6 Effective Hamiltonians for FCNC Processes 6.1 Overture: General View of FCNC Processes 6.2 Calculations of Basic One-Loop Functions 6.3 ΔF =2 Transitions 6.4 The World of Penguins 6.5 B → Xsγ Decay 6.6 b → sℓ+ℓ− and d → sℓ+ℓ− Transitions 6.7 d → sνν¯ and b → sνν¯ Transitions 7 Nonperturbative Methods in Weak Decays 7.1 General View 7.2 Dual QCD Approach 7.3 Lattice QCD Results 7.4 QCD Factorization for Exclusive B Decays 7.5 Heavy Quark Effective Theory (HQET) and Heavy Quark Expansions (HQE) 7.6 Other Nonperturbative Methods 8 Particle-Antiparticle Mixing and CP Violation in the Standard Model 8.1 Particle-Antiparticle Mixing 8.2 Bq Decays into CP Eigenstates 8.3 Classification of CP Violation 8.4 Standard Analysis of the Unitarity Triangle (UT) 8.5 The Angles α, β, and γ from Bd,s Decays 8.6 B → πK Decays 9 Rare B and K Decays in the Standard Model 9.1 B¯ → K¯*ℓ+ℓ− and B¯ → K¯ℓ+ℓ− 9.2 Bs,d → μ+μ− and Bs,d → τ+τ−, e+e− 9.3 B+ → τ+ντ 9.4 B¯ → Dℓν¯l, B¯ → D*ℓν¯l, Bc → J/ψℓν¯l, and Λb → Λcℓν¯l 9.5 K+ → π+νν¯ and KL → π0νν¯ 9.6 B → K* νν¯, B → Kνν¯, and B → Xsνν¯ 9.7 KL,S → μ+μ− and KL → π0ℓ+ℓ− 10 ε′/ε in the Standard Model 10.1 Preliminaries 10.2 Basic Formulas 10.3 Hadronic Matrix Elements 10.4 A Convenient Formula for ε′/ε in the SM 10.5 Numerical Analysis of ε′/ε 11 Charm Flavor Physics 11.1 Preliminaries 11.2 D0 − D¯0 Mixing 11.3 CP Asymmetries in D Decays 11.4 Connection between D and K Physics 12 Status of Flavor Physics within the Standard Model 12.1 Successes 12.2 Summary of the Anomalies 12.3 Implications for the Wilson Coefficients Part IV Weak Decays beyond the Standard Model 13 First Steps beyond the Standard Model 13.1 Preliminaries 13.2 ΔF =2 Transitions 13.3 ΔF =1 Nonleptonic Operators 14 Standard Model Effective Field Theory 14.1 Basic Framework 14.2 Full Set of Dimension-6 Operators 14.3 Rotations in the Flavor Space 14.4 Renormalization Group Equations 14.5 SU(2)L Correlations between b → sνν¯ and b → sℓ+ℓ− 14.6 General Procedure and Useful Results 14.7 ε′/ε beyond the SM 15 Simplest Extensions of the SM 15.1 Minimal Flavor Violation 15.2 2HDMMFV 15.3 Beyond MFV: Models with U(2)3 Symmetry 15.4 Beyond MFV: Z′ Boson 15.5 Beyond MFV: Z Boson with FCNC 15.6 Beyond MFV: Right-Handed W′ 15.7 Beyond MFV: Neutral Scalars and Pseudoscalars 15.8 Beyond MFV: Charged Scalar Exchanges 15.9 Beyond MFV: Colored Gauge Bosons and Scalars 16 Specific Models 16.1 Preliminaries 16.2 331 Models 16.3 Vector-Like Quarks and Leptons 16.4 Leptoquark Models 17 Beyond Quark Flavor Physics 17.1 General View 17.2 Lepton Flavor Violation 17.3 Electric Dipole Moments (EDMs) 17.4 Anomalous Magnetic Moments (g − 2)μ,e 17.5 Neutrino Oscillations 18 Grand Summary of New Physics Models 18.1 Preliminaries 18.2 General Observations on B Physics Anomalies 18.3 Tree-Level Mediators 18.4 Kaon Physics 18.5 Generalities 19 Flavor Expedition to the Zeptouniverse 19.1 Preliminaries 19.2 Basic Requirements for a Successful Zeptouniverse Expedition 19.3 Classifying Correlations between Various Observables 19.4 DNA Charts 19.5 Can We Reach the Zeptouniverse with Rare K and Bs,d Decays? 20 Summary and Shopping List Appendix A Dirac Algebra, Spinors, Pauliand Gell-Mann Matrices A.1 Dirac Algebra and Spinors A.2 Pauli and Gell-Mann Matrices A.3 Fierz Identities Appendix B Feynman Rules of the Standard Model B.1 Preliminaries B.2 Gauge Boson Propagators B.3 Fermion and Scalar Propagators B.4 Fermion–Gauge Boson Couplings B.5 Fermion–Goldstone (Higgs) Boson Couplings B.6 Gauge Boson Self-Interactions B.7 Gauge Boson–Goldstone (Higgs) Interactions Appendix C Massive Loop Integrals C.1 Integrals with Two Propagators C.2 Integrals with Three Propagators C.3 Integrals with Four Propagators C.4 More Complicated Integrals Appendix D Numerical Input Appendix E Analytic Solutions to SMEFT RG Equations References Index