دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: زیست شناسی ویرایش: 1 نویسندگان: Lilianna Solnica-Krezel سری: ISBN (شابک) : 9780128127988, 9780128127995 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 457 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Gastrulation From Embryonic Pattern to Form به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گاسترولاسیون از الگوی جنینی تا شکل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Series page Copyright Contributors Preface Preface Acknowledgments Chapter 1 Setting up for gastrulation: D. melanogaster Introduction Establishment of embryonic polarity occurs in oocytes Navigating the maternal-to-zygotic transition Gene expression patterns establish the prospective germ layers Gene regulatory interactions prepare cells for diverse cell movements at gastrulation Dynamic feedback between genetic patterning and physical tissue morphogenesis References Chapter 2 Setting up for gastrulation in zebrafish Introduction Maternal factors and dorsal-ventral patterning Defining and delimiting dorsal: Maternal β-catenin with or without Wnt Determinants at the vegetal pole Turning BMP on by shutting down the organizer Transforming blastula tissues to form the germ layers It takes two to tango: TGFβ heterodimers specify mesendoderm Exposure matters, inhibition needed, no feedback required when nodal organizes Cohabiting or dwelling alone, location matters in mesendoderm patterning Pattering along, toddler loses endoderm Mom´s got skin in the game, patterning the ectoderm and the enveloping layer Conclusion Acknowledgments References Chapter 3 Signaling events regulating embryonic polarity and formation of the primitive streak in the chick embryo Introduction Embryonic regulation Role of the posterior marginal zone in initiation of primitive streak formation Molecular basis of primitive streak induction by the posterior marginal zone cVg1 (GDF1) Wnt8C Pitx2 The hypoblast inhibits primitive streak formation Hypoblast, endoblast and definitive endoderm Formation and shaping of the primitive streak Mechanisms ensuring that gastrulation is initiated only in one place Inhibitors Communication Comparison to other model organisms Summary and conclusions References Chapter 4 Comparative analysis of human and mouse development: From zygote to pre-gastrulation Introduction Pre-implantation development: From zygote to blastocyst formation Implantation and the role of trophectoderm Epiblast epithelization and pro-amniotic cavity formation Pre-gastrulation patterning and establishment of the anterior-posterior axis Conclusions References Further reading Chapter 5 The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation Overview Apical constriction: Force generation at the molecular and cellular level Tissue invagination: Integrating cells across the tissue RhoA signaling: Activating contractility and coordinating cell behavior Gene regulation: Cell signaling centers and tissue geometry Late gastrulation: Subsequent mesoderm EMT and spreading Concluding remarks References Chapter 6 Cellular, molecular, and biophysical control of epithelial cell intercalation Convergent extension: A conserved mechanism for shaping epithelia Cell rearrangements during convergent extension in the Drosophila embryo The molecular basis of epithelial cell intercalation Biophysical control of epithelial cell intercalation Breaking planar symmetry Toll receptors direct planar polarity and cell intercalation Regulation of planar polarity at compartment boundaries Control of junctional and medial myosin by G protein-coupled receptors Current questions and future challenges Acknowledgments References Further reading Chapter 7 Gastrulation in the sea urchin A sequential overview of sea urchin gastrulation Setting the stage for gastrulation: Specification of the vegetal plate The pigment cells invade the blastocoel shortly after the skeletogenic cells Mechanistic studies of primary invagination Specification of endoderm Cells at the tip of the advancing archenteron are necessary for establishing right-left asymmetry Homing of the primordial germ cells to the coelomic pouches Summary Acknowledgments References Chapter 8 Tunicate gastrulation Introduction: Tunicates-their place on the evolutionary tree and their contribution to our understanding of embryology Events leading up to gastrulation Cleavage patterns Ooplasmic segregation/PEM Origin of germ layers Mechanisms of gastrulation Endoderm-intrinsic forces in gastrulation Gastrulation in other tunicates Colonial tunicates The thaliaceans: Salps, doliods and pyrosomes Peri-gastrulation events Notochord development Neural induction and neurulation Conclusion Acknowledgments References Chapter 9 Mesoderm and endoderm internalization in the Xenopus gastrula Introduction Outline of Xenopus gastrulation Bottle cell formation Dorsal multilayer invagination Apical layer processes Deep cell movements Convergent extension by parallel intercalation Peak involution of the dorsal Xbra domain Ventral internal involution Orthogonal convergent extension of the dorsal Xbra domain Internalization of the vegetal cell mass by ingression-type deep bottle cell migration Blastopore closure Conclusions Acknowledgments References Chapter 10 Convergent extension in the amphibian, Xenopus laevis Introduction Active, force-producing CE occurs in presumptive notochordal and somitic mesoderm and in presumptive hindbrain-spinal ... CE is driven by both radial intercalation (RI) and mediolateral intercalation (MI) of cells Mechanisms underlying the RI component of CE The mechanism and function of mediolateral intercalation behavior (MIB) in mesodermal CE The node and cable network (NCN) and iterated actomyosin contraction is the ``power stroke´´ of MIB Cell-on-cell traction rather than cell on matrix traction generates most of the tissue-level, tensile forces driving c ... Balanced traction, regulation of contraction, and the logic of cell intercalation An epithelial, junction remodeling model of notochordal cell intercalation Comparison of the mesenchymal, cell-on-cell traction (CCT) model and the epithelial junction remodeling (EJR) model o ... Computational models of CE by MIB mediated CCT Large scale patterning of MIB is essential for Normal CE function Patterning of mesodermal CE relative to other landmarks and presumptive tissues Neural cell intercalation and CE Forces and mechanics of the progressive expression of mesodermal MIB Evaluating the contributions of the epithelial and deep layers to forces driving CE The role of tissue boundary formation, Eph/Ephrin signaling, and tissue surface tension in CE Late elongation and straightening of the body plan is driven by notochord straightening and elongation, and elongatio ... Late endoderm elongation CE as a large-scale mechanical patterning mechanism Outlook References Chapter 11 Mechanisms of zebrafish epiboly: A current view Introduction and overview Setting the stage for epiboly Epiboly initiation Epiboly progression EVL morphogenesis during epiboly progression Deep cell movements E-YSN and yolk cell microtubules Conclusions and perspectives Acknowledgments References Further reading Chapter 12 Zebrafish gastrulation: Putting fate in motion The fundamentals of germ layer specification and patterning Nodal signaling and mesendoderm patterning Setting up the Nodal signaling domain Dose-dependent responses to Nodal signaling Ectoderm specification: The default cell fate? Shaping the zebrafish gastrula: Cell and tissue morphogenesis Mesendoderm internalization movements Dual role of Nodal signals in mesendoderm specification and internalization Directed cell migration, a key mechanism to ensure germ layer segregation Establishment of inside-out polarity in the zebrafish gastrula Maintaining epiblast/hypoblast tissue boundary Animal pole-directed mesendoderm migration-A path that comes in many flavors Dorsal mesendoderm migration: Integrating autonomous cell motility amid a collective Ventrolateral mesendoderm migration: The role of Apelin signaling Endoderm migration-A `guided random walk? Outlook Acknowledgments Glossary References Chapter 13 Cellular and molecular mechanisms of convergence and extension in zebrafish Overview of zebrafish C&E C&E of the mesoderm Axial mesoderm: Chordamesoderm Axial mesoderm: Prechordal plate Paraxial mesoderm Lateral mesoderm Ventral mesoderm C&E of the endoderm C&E of the neuroectoderm Neural plate Neural keel Interactions between germ layers influence C&E Mesoderm-neuroectoderm interactions Endoderm-mesoderm interactions Concluding remarks References Chapter 14 Movements of chick gastrulation Introduction: Morphology of the early embryo Early movements in the epiblast position the gastrulation site before its formation Initial positioning of gastrulation regulators Rearrangement of the primitive streak precursors and global movements in the epiblast Cooperative EMT triggers the formation of the initial primitive streak Movements during gastrulation Cell behaviors in the primitive streak Tension created by ingression at the primitive streak drives movements in the entire epiblast Movements into the lower layers End of gastrulation stage Summary and conclusions References Chapter 15 Guts and gastrulation: Emergence and convergence of endoderm in the mouse embryo Preimplantation development, the blastocyst and emergence of the first endoderm population in the mouse Anterior visceral endoderm (AVE), a derivative of the primitive endoderm (PrE) establishes the anterior-posterior axis ... Gastrulation: Convergence of signals driving exit from pluripotency and acquisition of distinct cell identities in tim ... Morphogenetic cell behaviors at the primitive streak: The gastrulation EMT Morphogenetic cell behaviors driving gut endoderm formation Gut endoderm morphogenesis coincides with germ layer segregation Behavior of VE cells at the midline Single-cell transcriptomic studies support the dual origin of the gut endoderm The epigenetic landscape of embryonic (definitive) and extra-embryonic (visceral) endoderm Mesendoderm and the mouse Transforming the gut endoderm into the gut tube: Ventral folding Patterning the gut tube and the emergence of organ identities Concluding remarks Acknowledgments References