دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Prisner E.
سری:
ISBN (شابک) : 9781614441151
ناشر: MAA
سال نشر: 2014
تعداد صفحات: 308
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Game theory through examples به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری بازی ها از طریق مثال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تئوری بازی ها از طریق مثال ها مقدمه ای کامل بر نظریه بازی های ابتدایی است که بازی های محدود را با اطلاعات کامل پوشش می دهد. فلسفه اصلی زیربنای این جلد این است که مفاهیم انتزاعی زمانی که برای اولین بار (و به طور مکرر) در محیط های انضمامی با آنها مواجه می شوند، به بهترین وجه یاد می گیرند. بنابراین، ایدههای اساسی نظریه بازیها در اینجا در چارچوب بازیهای واقعی ارائه میشوند، بازیهای واقعی بسیار پیچیدهتر و غنیتر از نمونههای اسباببازی معمولی. همه ایدههای بنیادی اینجا هستند: تعادل نش، استقرا به عقب، احتمال ابتدایی، اطلاعات ناقص، شکل گسترده و عادی، استراتژیهای ترکیبی و رفتاری. رویکرد یادگیری فعال و مثال محور، متن را برای دوره ای مناسب می سازد که از طریق حل مسئله تدریس می شود. دانش آموزان به طور کامل با تمرین های کلاس درس گسترده، مسائل تکالیف قانع کننده و نزدیک به شصت پروژه در متن درگیر خواهند شد. همچنین تقریباً هشتاد اپلت جاوا و سه دوجین صفحهگسترده اکسل موجود است که دانشآموزان میتوانند در آنها بازی کنند و اطلاعات را سازماندهی کنند تا به تجزیه و تحلیل بازیها کمک کنند. اکتشاف ریاضی شکل عمیق بازی است. این اصل در این کتاب تجسم یافته است. تئوری بازی ها از طریق مثال ها مقدمه ای پر جنب و جوش برای این نظریه جذاب است. فرض اینکه فقط پیش نیازهای دبیرستان باشد، این حجم را مخصوصاً برای یک دوره آموزشی هنرهای آزاد یا آموزش عمومی روح ریاضی مناسب می کند. همچنین می تواند به عنوان مکمل یادگیری فعال برای یک متن انتزاعی تر در یک دوره تئوری بازی های بخش بالا عمل کند.
Game Theory through Examples is a thorough introduction to elementary game theory, covering finite games with complete information. The core philosophy underlying this volume is that abstract concepts are best learned when encountered first (and repeatedly) in concrete settings. Thus, the essential ideas of game theory are here presented in the context of actual games, real games much more complex and rich than the typical toy examples. All the fundamental ideas are here: Nash equilibria, backward induction, elementary probability, imperfect information, extensive and normal form, mixed and behavioral strategies. The active-learning, example-driven approach makes the text suitable for a course taught through problem solving. Students will be thoroughly engaged by the extensive classroom exercises, compelling homework problems, and nearly sixty projects in the text. Also available are approximately eighty Java applets and three dozen Excel spreadsheets in which students can play games and organize information in order to acquire a gut feeling to help in the analysis of the games. Mathematical exploration is a deep form of play; that maxim is embodied in this book. Game Theory through Examples is a lively introduction to this appealing theory. Assuming only high school prerequisites makes the volume especially suitable for a liberal arts or general education spirit-of-mathematics course. It could also serve as the active-learning supplement to a more abstract text in an upper-division game theory course.
front cover ... 1 Game TheoryThrough Examples ... 4 copyright page ... 3 Contents ... 8 Preface ... 17 Chapter 1 Theory 1: Introduction ... 22 1.2 Game, Play, Move: Some De?nitions ... 22 1.3 Classi?cation of Games ... 23 Exercises ... 24 Chapter 2 Theory 2: Simultaneous Games ... 25 2.1 Normal Form—Bimatrix Description ... 25 2.1.1 Two Players ... 25 2.1.2 Two Players, Zero-sum ... 26 2.1.3 Three or More Players ... 26 2.1.4 Symmetric Games ... 27 2.2 Which Option to Choose ... 27 2.2.1 Maximin Move and Security Level ... 27 2.2.2 Dominated Moves ... 28 2.2.3 Best Response ... 29 2.2.4 Nash Equilibria ... 30 2.3 Additional Topics ... 34 2.3.1 Best Response Digraphs ... 34 2.3.2 2-Player Zero-sum Symmetric Games ... 35 Exercises ... 36 Chapter 3 Example: Selecting a Class ... 40 3.1 Three Players, Two Classes ... 40 3.1.1 “I like you both” ... 40 3.1.2 Disliking the Rival ... 42 3.1.3 Outsider ... 42 3.2 Larger Cases ... 43 3.3 Assumptions ... 44 Exercises ... 44 Chapter 4 Example: Doctor Location Games ... 46 4.1 Doctor Location ... 46 4.1.1 An Example Graph ... 47 4.1.2 No (Pure) Nash Equilibrium? ... 48 4.1.3 How Good are the Nash Equilibria for the Public? ... 49 4.2 Trees ... 49 4.3 More than one Of?ce (optional) ... 52 Exercises ... 52 Chapter 5 Example: Restaurant Location Games ... 55 5.1 A First Graph ... 56 5.2 A Second Graph ... 57 5.3 Existence of Pure Nash Equilibria ... 58 5.4 More than one Restaurant (optional) ... 59 Exercises ... 60 Chapter 6 Using Excel ... 63 6.1 Spreadsheet Programs like Excel ... 63 6.2 Two-Person Simultaneous Games ... 64 6.3 Three-Person Simultaneous Games ... 64 Exercises ... 64 Chapter 7 Example: Election I ... 68 7.1 First Example ... 68 7.2 Second Example ... 69 7.3 The General Model ... 71 7.4 Third Example ... 71 7.5 The Eight Cases ... 72 7.6 Voting Power Indices (optional) ... 72 Exercises ... 73 Chapter 8 Theory 3: Sequential Games I: Perfect Information and no Randomness ... 74 8.1 Extensive Form: Game Tree and Game Digraph ... 74 8.2 Analyzing the Game: Backward Induction ... 77 8.2.1 Finite Games ... 77 8.2.2 The Procedure ... 78 8.2.3 Zermelo’s Theorem ... 80 8.3 Additional Topics ... 80 8.3.1 Reality Check ... 80 8.3.2 Playing it Safe—Guaranteed Payoffs ... 82 8.3.3 Two-person Zero-sum Games ... 84 8.3.4 Breaking Ties ... 85 8.3.5 Existing Games ... 85 8.3.6 Greedy Strategies ... 86 Exercises ... 86 Chapter 9 Example: Dividing A Few Items I ... 91 9.1 Greedy Strategy ... 91 9.2 Backward Induction ... 92 9.2.1 Game Tree ... 92 9.2.2 Game Digraph ... 92 9.2.3 Example: Game Digraph for ABBAB ... 93 9.3 An Abbreviated Analysis ... 93 9.3.1 Why it Matters: Complexity (optional) ... 95 9.4 Bottom-Up Analysis ... 96 9.5 Interdependencies between the Items (optional) ... 97 Exercises ... 97 Chapter 10 Example: Shubik Auction I ... 98 Chapter 11 Example: Sequential Doctor and Restaurant Location ... 101 11.1 General Observations for Symmetric Games ... 101 11.2 Doctor Location ... 102 11.3 Constant-Sum Games ... 103 11.4 Restaurant Location ... 104 11.5 Nash Equilibria and First Mover Advantage for Symmetric Games ... 105 Exercises ... 105 Chapter 12 Theory 4: Probability ... 107 12.1 Terminology ... 107 12.2 Computing Probabilities ... 109 12.2.1 Equally Likely Simple Events ... 109 12.2.2 Simple Events not Equally Likely ... 109 12.3 Expected Value ... 110 12.4 Multistep Experiments ... 112 12.4.1 Probability Trees ... 112 12.4.2 Conditional Probabilities ... 112 12.4.3 Probability Digraphs ... 114 12.5 Randomness in Simultaneous Games ... 115 12.6 Counting without Counting ... 116 Exercises ... 116 Chapter 13 France 1654 ... 120DarkBlue,bold,notItalic,open,TopLeftZoom,239,145,0.0 Chapter 14 Example: DMA Soccer I ... 123 14.1 1-Round 2-Step Experiment for Given Player Distributions ... 124 14.2 Expected Goal Difference for the One-Round Game ... 125 14.3 3-Rounds Experiment for Given Player Distributions ... 126 14.4 Static Three-round Game ... 128 14.5 Static Nine-round DMA Soccer ... 129 Exercises ... 129 Chapter 15 Example: Dividing A Few Items II ... 131 15.1 Goals of Fairness and Ef?ciency ... 131 15.1.1 Fairness ... 131 15.1.2 Ef?ciency ... 132 15.1.3 Three Additional Features ... 132 15.1.4 Mechanism Design ... 133 15.2 Some Games ... 133 15.2.1 Selecting one by one Games ... 133 15.2.2 Cut and Choose ... 133 15.2.3 Random and Exchange ... 134 15.3 Examples ... 134 15.4 Comparison of the Games for Seven Items and Complete Information ... 136 15.4.1 Opposing or Similar Preferences ... 137 15.5 Incomplete Information ... 139 Exercises ... 140 Chapter 16 Theory 5: Sequential Games with Randomness ... 142 16.1 Extensive Form Extended ... 142 16.2 Analyzing the Game: Backward Induction again ... 142 16.3 Decision Theory: Alone against Nature ... 143 Exercises ... 146 Chapter 17 Example: Sequential Quiz Show I ... 150 Prerequisites: Chapters 8, 12, and 16. ... 150 17.1 Candidates with Little Knowledge ... 150 17.1.1 More May be Less ... 151 17.2 One Candidate Knows More ... 152 17.2.1 Cindy Knows one Answer to be False ... 154 Exercises ... 154 Chapter 18 Las Vegas 1962 ... 156DarkBlue,bold,notItalic,open,TopLeftZoom,239,145,0.0 Chapter 19 Example: Mini Blackjack and Card Counting ... 160 19.1 The Basic Game ... 160 19.2 Playing against the House ... 163 19.2.1 How Likely are the Distributions? ... 164 19.2.2 Betting High and Low ... 166 19.2.3 Reshuf?ing ... 167 Exercises ... 168 Chapter 20 Example: Duel ... 170 20.1 One Bullet ... 170 20.1.1 Analysis of One-bullet Variants with Increasing Probabilities without Computer Help ... 171 20.1.2 Analysis of DUEL(1 ; 1 j m ; 2m ; 3m ; : : : ) ... 172 20.2 Two or more Bullets ... 173 20.2.1 A few Cases of DUEL(2; 2jm; 2m; 3m; : : :) ... 174 Exercises ... 175 Chapter 21 Santa Monica in the 50s ... 177DarkBlue,bold,notItalic,open,TopLeftZoom,239,145,0.0 Chapter 22 Theory 6: Extensive Form of General Games ... 180 22.1 Extensive Form and Information Sets ... 180 22.2 No Backward Induction for Imperfect Information ... 184 22.3 Subgames ... 185 22.4 Multi-round Games ... 186 22.5 Why Trees for Imperfect Information? ... 186 Exercises ... 187 Chapter 23 Example: Shubik Auction II ... 190 23.1 Possible Sudden End ... 190 23.2 Imperfect and Incomplete Information ... 193 23.3 The Auctioneer Enters the Game (optional) ... 193 Exercises ... 195 Chapter 24 Theory 7: Normal Form and Strategies ... 197 24.1 Pure Strategies ... 197 24.1.1 Reduced Pure Strategies ... 198 24.2 Normal Form ... 198 24.3 Using Tools from Simultaneous Games for the Normal Form ... 201 24.4 Subgame Perfectness ... 201 24.5 Special Case of Sequential Games with Perfect Information ... 203 Exercises ... 203 Chapter 25 Example: VNM POKER and KUHN POKER ... 206 25.1 Description ... 206 25.2 VNM POKER ... 208 25.3 KUHN POKER ... 211 Exercises ... 212 Chapter 26 Example: Waiting for Mr. Perfect ... 214 26.1 The Last Round ... 214 26.2 The Eight Pure Strategies ... 215 26.3 Computing the Payoffs ... 215 26.4 Domination ... 216 26.5 The Reduced Normal Forms in the Three Cases ... 217 26.5.1 The Case p 2 C 2p 3 < 1 ... 217 26.5.2 The Case p 2 C 2p 3 > 1 ... 218 26.5.3 The Case p 2 C 2p 3 D 1 ... 218 Chapter 27 Theory 8: Mixed Strategies ... 220 27.1 Mixed Strategies ... 220 27.1.1 Best Response ... 221 27.1.2 Brown’s Fictitious Play ... 221 27.1.3 Mixed Maximin Strategy, Mixed Security Level, and Linear Programs ... 223 27.2 Mixed Nash Equilibria ... 224 27.2.1 Two-player Zero-sum Games ... 224 27.2.2 Non-Zero-sum Games ... 224 27.3 Computing Mixed Nash Equilibria ... 225 27.3.1 Small Two-player Zero-sum Games (optional) ... 226 2 x n zero-sum games ... 226 3 x n zero-sum games ... 227 27.3.2 Solving Small non Zero-sum Two-player Games by Solving Equations (optional) ... 228 Exercises ... 230 Chapter 28 Princeton in 1950 ... 233DarkBlue,bold,notItalic,open,TopLeftZoom,239,145,0.0 Chapter 29 Example: Airport Shuttle ... 236 29.1 The Simple Model ... 236 29.1.1 To the Airport ... 236 29.1.2 From the Airport ... 239 29.1.3 Combining Both ... 239 29.2 Impatient Customers ... 240 Exercises ... 240 Chapter 30 Example: Election II ... 241 30.1 Left Over from Election I ... 241 30.2 More Effort into Large Districts ... 242 30.3 Defend Where Ahead or Attack Where Weak? ... 243 30.4 Is Larger Better? ... 244 30.5 ELECTION(7; 8; 13j 1; 1; 2jx; x ... 244 Exercises ... 245 Chapter 31 Example: VNM POKER(2; r; m; n) ... 246 Chapter 32 Theory 9: Behavioral Strategies ... 252 32.1 Behavioral versus Mixed Strategies ... 253 32.1.1 Calculating Mixed Strategies from Behavioral Strategies ... 254 32.1.2 Calculating Behavioral Strategies from Mixed Strategies for a Game Tree with Perfect Recall ... 254 32.1.3 Kuhn’s Theorem ... 256 Exercises ... 256 cases where Ann exchanged and Ann has card ... 257 Chapter 33 Example: Multiple-Round Chicken ... 258 33.1 Ordinary Chicken ... 258 33.2 Two-round Chicken ... 259 33.2.1 Generalized Backward Induction, using the Extensive Form ... 259 33.2.2 Working with the Normal Form ... 261 33.2.3 Connections between the two Approaches ... 261 33.3 Three-round Chicken ... 262 Exercises ... 264 Chapter 34 Example: DMA Soccer II ... 265 34.1 Multi-round Simultaneous Games ... 265 34.2 Information Sets and Moves ... 266 34.3 The Optimal Third Move in Selected Cases ... 267 34.3.1 A Detailed Example: (2, 2) versus (3, 1) ... 267 Ann is one Goal Behind ... 268 Other Goal Differences ... 269 34.3.2 A Second Example: (1, 3) versus (2, 2) ... 270 34.4 The Optimal Second Move for Seven Positions: (1, 3) versus (2, 2) and any Goal Difference ... 270 34.5 Couldn’t We Analyze the Whole Game? ... 272 34.6 How Good a Model is it? ... 272 Chapter 35 Example: Sequential Quiz Show II ... 273 Prerequisites: Chapters 16 and 17. This chapter provides a glimpse into cooperative game theory, which is otherwise not covered. ... 273 35.1 Fixed Coalitions ... 273 35.1.1 Ann and Cindy Form a Coalition ... 273 35.1.2 Ann and Beth Form a Coalition ... 275 35.1.3 Beth and Cindy Form a Coalition ... 275 35.2 Which Coalition Will Form? ... 275 35.2.1 Fixed 50:50 Split ... 275 35.3 Another Variant: Split can be Negotiated ... 276 35.4 The Grand Coalition ... 277 35.4.1 The Core ... 277 35.4.2 The Shapley Value ... 277 Exercises ... 278 Chapter 36 Example: VNM POKER(4, 4, 3, 5) ... 280 36.1 Mixed Nash Equilibria ... 280 36.2 Performance of Pure Strategies against the Mixed Nash Equilibria ... 282 Chapter 37 Example: KUHN POKER(3, 4, 2, 3) ... 285 37.1 From Behavioral Strategies to Mixed Strategies to Expectations ... 286 37.2 From Mixed Strategies to Behavioral Strategies ... 287 Exercises ... 287 Chapter 38 Example: End-of-Semester Poker Tournament ... 289 Prerequisites: Chapter 25 and all theory chapters, in particular Chapters 24, 27, and 32. Each semester my game theory class has ... 289 38.1 Expectations ... 290 38.2 Odds ... 291 38.2.1 Many Rounds ... 294 38.3 The Favorite in Knockout Tournaments ... 294 38.4 Similarity of the DNA (optional) ... 295 38.5 How to Create your own Tournament ... 295 Exercises ... 296 Chapter 39 Stockholm 1994 ... 298 Bibliography ... 301 Index ... 305