دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نظریه بازی ویرایش: 1 نویسندگان: Mark Broom. Jan Rychtar سری: Chapman & Hall/CRC Mathematical and Computational Biology ISBN (شابک) : 1439853215, 9781439853214 ناشر: Chapman and Hall/CRC سال نشر: 2013 تعداد صفحات: 516 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب مدل های نظری بازی در زیست شناسی: تکامل، فسیل ها، نظریه بازی ها، ژنتیک، زیست شناسی مولکولی، ارگانیک، دیرینه شناسی، علوم و ریاضی، کاربردی، بیوماتیک، معادلات دیفرانسیل، نظریه بازی ها، نظریه گراف، برنامه ریزی خطی، احتمال و آمار، آمار، مدل سازی، تحلیل ریاضی علوم و ریاضیات، ترکیبات، ریاضیات محض، ریاضیات، علوم و ریاضی، زیست شناسی و علوم زیستی، آناتومی و فیزیولوژی، زیست شناسی، گیاه شناسی، بوم شناسی، جانورشناسی، علوم و ریاضیات، کتاب های درسی جدید، مستعمل و اجاره ای، بوتیک تخصصی، ریاضیات،
در صورت تبدیل فایل کتاب Game-Theoretical Models in Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل های نظری بازی در زیست شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دربرگیرنده موضوعات اصلی نظریه بازی های تکاملی، مدل های نظری بازی در زیست شناسی مدل های ریاضی انتزاعی و عملی از موقعیت های واقعی بیولوژیکی را ارائه می دهد. این جنبههای ایستا نظریه بازیها را به روشی دقیق ریاضی مورد بحث قرار میدهد که برای ریاضیدانان جذاب است. علاوه بر این، نویسندگان بسیاری از کاربردهای نظریه بازیها را در زیستشناسی بررسی میکنند و متن را برای زیستشناسان نیز مفید میسازند.
این کتاب طیف گستردهای از موضوعات را در بازیهای تکاملی توصیف میکند، از جمله بازی های ماتریسی، دینامیک شبیه ساز، بازی کبوتر شاهین و معضل زندانی. این استراتژی پایدار از نظر تکاملی، یک مفهوم کلیدی در بازیهای بیولوژیکی را پوشش میدهد و جزئیات عمیق مدلهای ریاضی را ارائه میدهد. اکثر فصل ها نحوه استفاده از MATLAB® را برای حل بازی های مختلف نشان می دهند.
پدیده های بیولوژیکی مهم، مانند نسبت جنسی بسیاری از گونه ها نزدیک به نصف، تکامل رفتار مشارکتی، و وجود زینت ها (به عنوان مثال، طاووس دم)، با استفاده از ایدههای مبتنی بر مدلسازی نظری بازی توضیح داده شدهاند. این کتاب که برای خوانندگانی که در رابط ریاضیات و علوم زیستی مطالعه و کار می کنند، مناسب است، نشان می دهد که چگونه از نظریه بازی های تکاملی در مدل سازی این پدیده های زیستی متنوع استفاده می شود.
Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well.
The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner’s dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use MATLAB® to solve various games.
Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behavior, and the existence of adornments (for example, the peacock’s tail), have been explained using ideas underpinned by game theoretical modeling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modeling of these diverse biological phenomena.
Front Cover ... 1 Dedication ... 8 Contents ... 10 Preface ... 22 Authors ... 26 Chapter 1: Introduction ... 28 1.1 The history of evolutionary games ... 28 1.1.1 Early game playing and strategic decisions ... 30 1.1.2 The birth of modern game theory ... 31 1.1.3 The beginnings of evolutionary games ... 32 1.2 The key mathematical developments ... 34 1.2.1 Static games ... 34 1.2.2 Dynamic games ... 35 1.3 The range of applications ... 37 1.4 Reading this book ... 38 Chapter 2: What is a game? ... 40 2.1 Key game elements ... 41 2.1.1 Players ... 41 2.1.2 Strategies ... 42 2.1.2.1 Pure strategies ... 42 2.1.2.2 Mixed strategies ... 43 2.1.2.3 Pure or mixed strategies? ... 45 2.1.3 Payo?s ... 45 2.1.3.1 Representation of payo?s by matrices ... 46 2.1.3.2 Payo?s from contests between mixed strategists ... 47 2.1.3.3 Generic payo?s ... 48 2.1.4 Games in normal form ... 50 2.2 Games in biological settings ... 51 2.2.1 Representing the population ... 52 2.2.2 Payo?s in matrix games ... 53 2.3 Further reading ... 54 2.4 Exercises ... 54 Chapter 3: Two approaches to game analysis ... 56 3.1 The dynamical approach ... 56 3.1.1 Replicator dynamics ... 56 3.1.1.1 Discrete replicator dynamics ... 56 3.1.1.2 Continuous replicator dynamics ... 57 3.1.2 Adaptive dynamics ... 58 3.1.3 Other dynamics ... 59 3.1.4 Timescales in evolution ... 60 3.2 The static approach—Evolutionarily Stable Strategy (ESS) ... 61 3.2.1 Nash equilibria ... 61 3.2.2 Evolutionarily Stable Strategies ... 64 3.2.2.1 ESSs for matrix games ... 65 3.2.3 Some di?erences between polymorphic and monomorphic populations ... 66 3.2.4 Stability of Nash equilibria and of ESSs ... 68 3.3 Dynamics versus statics ... 69 3.3.1 ESS and replicator dynamics in matrix games ... 70 3.3.2 Replicator dynamics and ?nite populations ... 71 3.4 MATLAB program ... 72 3.5 Further reading ... 73 3.6 Exercises ... 73 Chapter 4: Some classical games ... 76 4.1 The Hawk-Dove game ... 76 4.1.1 The underlying con?ict situation ... 76 4.1.2 The mathematical model ... 77 4.1.3 Mathematical analysis ... 77 4.1.4 An adjusted Hawk-Dove game ... 78 4.1.5 Replicator dynamics in the Hawk-Dove game ... 78 4.1.6 Polymorphic mixture versus mixed strategy ... 78 4.2 The Prisoner’s Dilemma ... 80 4.2.1 The underlying con?ict situation ... 81 4.2.2 The mathematical model ... 81 4.2.3 Mathematical analysis ... 82 4.2.4 Interpretation of the results ... 82 4.2.5 The Iterated Prisoner’s Dilemma, computer tournaments and Tit for Tat ... 83 4.3 The war of attrition ... 85 4.3.1 The underlying con?ict situation ... 85 4.3.2 The mathematical model ... 85 4.3.3 Mathematical analysis ... 86 4.3.4 Some remarks on the above analysis and results ... 88 4.3.5 A war of attrition game with limited contest duration ... 88 4.3.6 A war of attrition with ?nite strategies ... 89 4.3.7 The asymmetric war of attrition ... 90 4.4 The sex ratio game ... 90 4.4.1 The underlying con?ict situation ... 91 4.4.2 The mathematical model ... 91 4.4.3 Mathematical analysis ... 92 4.5 MATLAB program ... 92 4.6 Further reading ... 94 4.7 Exercises ... 95 Chapter 5: The underlying biology ... 98 5.1 Darwin and natural selection ... 98 5.2 Genetics ... 100 5.2.1 Hardy-Weinberg equilibrium ... 102 5.2.2 Genotypes with di?erent ?tnesses ... 104 5.3 Games involving genetics ... 107 5.3.1 Genetic version of the Hawk-Dove game ... 107 5.3.2 A rationale for symmetric games ... 108 5.3.3 Restricted repertoire and the streetcar theory ... 109 5.4 Fitness, strategies and players ... 109 5.4.1 Fitness 1 ... 110 5.4.2 Fitness 2 ... 110 5.4.3 Fitness 3 ... 110 5.4.4 Fitness 4 ... 111 5.4.5 Fitness 5 ... 111 5.4.6 Further considerations ... 111 5.5 Sel?sh genes: How can non-bene?cal genes propagate? ... 112 5.5.1 Genetic hitchhiking ... 112 5.5.2 Sel?sh genes ... 114 5.5.3 Memes and cultural evolution ... 115 5.5.4 Selection at the level of the cell ... 115 5.6 The role of simple mathematical models ... 116 5.7 MATLAB program ... 117 5.8 Further reading ... 118 5.9 Exercises ... 118 Chapter 6: Matrix games ... 120 6.1 Properties of ESSs ... 120 6.1.1 An equivalent de?nition of an ESS ... 120 6.1.2 A uniform invasion barrier ... 121 6.1.3 Local superiority of an ESS ... 123 6.1.4 ESS supports and the Bishop-Cannings theorem ... 124 6.2 ESSs in a 2 × 2 matrix game ... 126 6.3 Haigh’s procedure to locate all ESSs ... 128 6.4 ESSs in a 3 × 3 matrix game ... 130 6.4.1 Pure strategies ... 130 6.4.2 A mixture of two strategies ... 131 6.4.3 Internal ESSs ... 131 6.4.4 No ESS ... 132 6.5 Patterns of ESSs ... 133 6.5.1 Attainable patterns ... 134 6.5.2 Exclusion results ... 135 6.5.3 Construction methods ... 136 6.5.4 How many ESSs can there be? ... 137 6.6 Extensions to the Hawk-Dove game ... 138 6.6.1 The extended Hawk-Dove game with generic payo?s ... 139 6.6.2 ESSs on restricted strategy sets ... 140 6.6.3 Sequential introduction of strategies ... 140 6.7 MATLAB program ... 141 6.8 Further reading ... 144 6.9 Exercises ... 145 Chapter 7: Nonlinear games ... 148 7.1 Overview and general theory ... 148 7.2 Linearity in the focal player strategy and playing the ?eld ... 151 7.2.1 A generalisation of results for linear games ... 151 7.2.2 Playing the ?eld ... 154 7.2.2.1 Parker’s matching principle ... 154 7.3 Nonlinearity due to non-constant interaction rates ... 156 7.3.1 Nonlinearity in pairwise games ... 156 7.3.2 Other games with nonlinear interaction rates ... 158 7.4 Nonlinearity in the strategy of the focal player ... 158 7.4.1 A sperm allocation game ... 159 7.4.2 A tree height competition game ... 160 7.5 Some di?erences between linear and nonlinear theory ... 161 7.6 MATLAB program ... 162 7.7 Further reading ... 164 7.8 Exercises ... 164 Chapter 8: Asymmetric games ... 168 8.1 Selten’s theorem for games with two roles ... 169 8.2 Bimatrix games ... 171 8.2.1 Dynamics in bimatrix games ... 173 8.3 Uncorrelated asymmetry—The Owner-Intruder game ... 175 8.4 Correlated asymmetry ... 177 8.4.1 Asymmetry in the probability of victory ... 178 8.4.2 A game of brood care and desertion ... 179 8.4.2.1 Linear version ... 179 8.4.2.2 Nonlinear version ... 180 8.4.3 Asymmetries in rewards and costs: the asymmetric war of attrition ... 182 8.5 MATLAB program ... 184 8.6 Further reading ... 185 8.7 Exercises ... 185 Chapter 9: Multi-player games ... 188 9.1 Multi-player matrix games ... 189 9.1.1 Two-strategy games ... 190 9.1.2 ESSs for multi-player games ... 192 9.1.3 Patterns of ESSs ... 194 9.1.4 More on two-strategy, m-player matrix games ... 194 9.1.5 Dynamics of multi-player matrix games ... 197 9.2 The multi-player war of attrition ... 199 9.2.1 The multi-player war of attrition without strategy adjustments ... 199 9.2.2 The multi-player war of attrition with strategy adjustments ... 201 9.2.3 Multi-player war of attrition with several rewards ... 202 9.3 Structures of dependent pairwise games ... 203 9.3.1 Knockout contests ... 203 9.4 MATLAB program ... 206 9.5 Further reading ... 208 9.6 Exercises ... 208 Chapter 10: Extensive form games and other concepts in game theory ... 212 10.1 Games in extensive form ... 212 10.1.1 Key components ... 213 10.1.1.1 The game tree ... 213 10.1.1.2 The player partition ... 213 10.1.1.3 Choices ... 213 10.1.1.4 Strategy ... 214 10.1.1.5 The payo? function ... 214 10.1.2 Backwards induction and sequential equilibria ... 214 10.1.3 Games in extensive form and games in normal form ... 218 10.2 Perfect, imperfect and incomplete information ... 220 10.2.1 Disturbed games ... 221 10.2.2 Games in extensive form with imperfect information—The information partition ... 223 10.3 Repeated games ... 226 10.4 MATLAB program ... 228 10.5 Further reading ... 229 10.6 Exercises ... 230 Chapter 11: State-based games ... 234 11.1 State-based games ... 235 11.1.1 Optimal foraging ... 235 11.1.2 The general theory of state-based games ... 237 11.1.3 A simple foraging game ... 238 11.1.4 Evolutionary games based upon state ... 239 11.2 A question of size ... 242 11.2.1 Setting up the model ... 243 11.2.2 ESS analysis ... 244 11.2.3 A numerical example ... 244 11.3 Life history theory ... 245 11.4 MATLAB program ... 247 11.5 Further reading ... 248 11.6 Exercises ... 249 Chapter 12: Games in finite and structured populations ... 252 12.1 Finite populations and stochastic games ... 252 12.1.1 The Moran process ... 252 12.1.2 The ?xation probability ... 254 12.1.3 General Birth-Death processes ... 256 12.1.4 The Moran process and discrete replicator dynamics ... 257 12.1.5 Fixation and absorption times ... 258 12.1.5.1 Exact formulae ... 258 12.1.5.2 The di?usion approximation ... 259 12.1.6 Games in ?nite populations ... 260 12.2 Evolution on graphs ... 263 12.2.1 The ?xed ?tness case ... 266 12.2.1.1 Regular graphs ... 267 12.2.1.2 Selection suppressors and ampli?ers ... 268 12.2.2 Games on graphs ... 269 12.2.3 Dynamics and ?tness ... 270 12.3 Spatial games and cellular automata ... 272 12.4 MATLAB program ... 274 12.5 Further reading ... 275 12.6 Exercises ... 276 Chapter 13: Adaptive dynamics ... 278 13.1 Introduction and philosophy ... 278 13.2 Fitness functions and the ?tness landscape ... 279 13.2.1 Taylor expansion of s(y, x) ... 281 13.2.2 Adaptive dynamics for matrix games ... 282 13.3 Pairwise invasibility and Evolutionarily Singular Strategies ... 283 13.3.1 Four key properties of Evolutionarily Singular Strategies ... 283 13.3.1.1 Non-invasible strategies ... 283 13.3.1.2 When an ess can invade nearby strategies ... 284 13.3.1.3 Convergence stability ... 284 13.3.1.4 Protected polymorphism ... 284 13.3.2 Classi?cation of Evolutionarily Singular Strategies ... 284 13.3.2.1 Case 5 ... 285 13.3.2.2 Case 7 ... 287 13.3.2.3 Case 3—Branching points ... 287 13.4 Adaptive dynamics with multiple traits ... 289 13.5 The assumptions of adaptive dynamics ... 291 13.6 MATLAB program ... 292 13.7 Further reading ... 293 13.8 Exercises ... 294 Chapter 14: The evolution of cooperation ... 298 14.1 Kin selection and inclusive ?tness ... 299 14.2 Greenbeard genes ... 301 14.3 Direct reciprocity: developments of the Prisoner’s Dilemma ... 304 14.3.1 An error-free environment ... 304 14.3.2 An error-prone environment ... 306 14.3.3 ESSs in the IPD game ... 307 14.3.4 A simple rule for the evolution of cooperation by direct reciprocity ... 308 14.4 Punishment ... 308 14.5 Indirect reciprocity and reputation dynamics ... 310 14.6 The evolution of cooperation on graphs ... 313 14.7 Multi-level selection ... 315 14.8 MATLAB program ... 316 14.9 Further reading ... 317 14.10 Exercises ... 318 Chapter 15: Group living ... 320 15.1 The costs and bene?ts of group living ... 320 15.2 Dominance hierarchies: formation and maintenance ... 321 15.2.1 Stability and maintenance of dominance hierarchies ... 321 15.2.2 Dominance hierarchy formation ... 324 15.2.2.1 Winner and loser models ... 325 15.2.3 Swiss tournaments ... 326 15.3 The enemy without: responses to predators ... 328 15.3.1 Setting up the game ... 329 15.3.1.1 Modelling scanning for predators ... 329 15.3.1.2 Payo?s ... 330 15.3.2 Analysis of the game ... 331 15.4 The enemy within: infanticide and other anti-social behaviour ... 332 15.4.1 Infanticide ... 332 15.4.2 Other behaviour which negatively a?ects groups ... 334 15.5 MATLAB program ... 335 15.6 Further reading ... 336 15.7 Exercises ... 337 Chapter 16: Mating games ... 340 16.1 Introduction and overview ... 340 16.2 Direct con?ict ... 341 16.2.1 Setting up the model ... 341 16.2.1.1 Analysis of a single contest ... 342 16.2.1.2 The case of a limited number of contests per season ... 342 16.2.2 An unlimited number of contests ... 345 16.2.3 Determining rewards and costs ... 346 16.3 Indirect con?ict and sperm competition ... 347 16.3.1 Setting up the model ... 347 16.3.1.1 Modelling sperm production ... 347 16.3.1.2 Model parameters ... 348 16.3.1.3 Modelling fertilization and payo?s ... 348 16.3.2 The ESS if males have no knowledge ... 349 16.3.3 The ESS if males have partial knowledge ... 350 16.3.4 Summary ... 351 16.4 The Battle of the Sexes ... 351 16.4.1 Analysis as a bimatrix game ... 352 16.4.2 The coyness game ... 352 16.4.2.1 The model ... 353 16.4.2.2 Fitness ... 354 16.4.2.3 Determining the ESS ... 356 16.5 Selecting mates: signalling and the handicap principle ... 357 16.5.1 Setting up the model ... 359 16.5.2 Assumptions about the game parameters ... 359 16.5.3 ESSs ... 361 16.5.4 A numerical example ... 362 16.5.5 Properties of the ESS—honest signalling ... 363 16.6 Other signalling scenarios ... 364 16.6.1 Limited options ... 364 16.6.2 Signalling without cost ... 365 16.7 MATLAB program ... 367 16.8 Further Reading ... 368 16.9 Exercises ... 369 Chapter 17: Food competition ... 372 17.1 Introduction ... 372 17.2 Ideal Free Distribution for a single species ... 372 17.2.1 The model ... 372 17.3 Ideal Free Distribution for multiple species ... 376 17.3.1 The model ... 376 17.3.2 Both patches occupied by both species ... 377 17.3.3 One patch occupied by one species, another by both ... 377 17.3.4 Species on di?erent patches ... 378 17.3.5 Species on the same patch ... 378 17.4 Distributions at and deviations from the Ideal Free Distribution ... 378 17.5 Compartmental models of kleptoparasitism ... 380 17.5.1 The model ... 381 17.5.2 Analysis ... 382 17.5.3 Extensions of the model ... 386 17.6 Compartmental models of interference ... 389 17.7 Producer-scrounger models ... 390 17.7.1 The Finder-Joiner game—the sequential version with complete information ... 391 17.7.1.1 The model ... 391 17.7.1.2 Analysis ... 391 17.7.1.3 Discussion ... 392 17.7.2 The Finder-Joiner game—the sequential version with partial information ... 394 17.8 MATLAB program ... 395 17.9 Further reading ... 397 17.10 Exercises ... 397 Chapter 18: Predator-prey and host-parasite interactions ... 400 18.1 Game-theoretical predator-prey models ... 400 18.1.1 The model ... 401 18.1.2 Analysis ... 402 18.1.3 Results ... 403 18.2 The evolution of defence and signalling ... 403 18.2.1 The model ... 404 18.2.1.1 Interaction of prey with a predator ... 404 18.2.1.2 Payo? to an individual prey ... 405 18.2.2 Analysis and results ... 406 18.2.3 An alternative model ... 406 18.2.4 Cheating ... 408 18.3 Brood parasitism ... 409 18.3.1 The model ... 409 18.3.2 Results ... 411 18.4 Parasitic wasps and the asymmetric war of attrition ... 412 18.4.1 The model ... 413 18.4.2 Analysis—evaluating the payo?s ... 415 18.4.3 Discussion ... 416 18.5 Complex parasite lifecycles ... 417 18.5.1 A model of upwards incorporation ... 417 18.5.2 Analysis and results ... 419 18.6 MATLAB program ... 419 18.7 Further reading ... 422 18.8 Exercises ... 422 Chapter 19: Epidemic models ... 426 19.1 SIS and SIR models ... 426 19.1.1 The SIS epidemic ... 427 19.1.1.1 The model ... 427 19.1.1.2 Analysis ... 428 19.1.1.3 Summary of results ... 429 19.1.2 The SIR epidemic ... 429 19.1.2.1 The model ... 430 19.1.2.2 Analysis and results ... 431 19.1.2.3 Some other models ... 431 19.1.3 Epidemics on graphs ... 433 19.2 The evolution of virulence ... 434 19.2.1 An SI model for single epidemics with immigration and death ... 434 19.2.1.1 Model and results ... 435 19.2.2 An SI model for two epidemics with immigration and death and no superinfection ... 435 19.2.2.1 Model and results ... 436 19.2.3 Superinfection ... 436 19.2.3.1 Model and results ... 437 19.3 Viruses and the Prisoner’s Dilemma ... 438 19.3.1 The model ... 438 19.3.2 Results ... 438 19.3.3 A real example ... 439 19.4 MATLAB program ... 440 19.5 Further reading ... 441 19.6 Exercises ... 441 Chapter 20: Conclusions ... 444 20.1 Types of evolutionary games used in biology ... 444 20.1.1 Classical games, linearity on the left and replicator dynamics ... 444 20.1.2 Strategies as a continuous trait and nonlinearity on the left ... 446 20.1.3 Departures from in?nite, well-mixed populations of identical individuals ... 446 20.1.4 More complex interactions and other mathematical complications ... 448 20.1.5 Some biological issues ... 449 20.1.6 Models of speci?c behaviours ... 450 20.2 What makes a good mathematical model? ... 451 20.3 Future developments ... 453 20.3.1 Agent-based modelling ... 453 20.3.2 Multi-level selection ... 453 20.3.3 Unifying timescales ... 454 20.3.4 Games in structured populations ... 454 20.3.5 Nonlinear games ... 454 20.3.6 Asymmetries in populations ... 455 20.3.7 What is a payo?? ... 455 20.3.8 A more uni?ed approach to model applications ... 455 Appendix A: Intro to MATLAB ... 456 Bibliography ... 472