دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Albrecht Fröhlich (auth.)
سری: Ergebnisse der Mathematik und ihrer Grenzgebiete 1
ISBN (شابک) : 9783642688188, 9783642688164
ناشر: Springer-Verlag Berlin Heidelberg
سال نشر: 1983
تعداد صفحات: 270
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب ساختار ماژول Galois از اعداد صحیح جبری: نظریه اعداد، نظریه میدان و چند جمله ای ها
در صورت تبدیل فایل کتاب Galois Module Structure of Algebraic Integers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختار ماژول Galois از اعداد صحیح جبری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این جلد، بررسی تئوری ساختار ماژول Galois برای حلقههای اعداد صحیح جبری را ارائه میکنیم. این نظریه در ده تا دوازده سال اخیر رشد سریعی را تجربه کرده است و به عمق و اهمیت ریاضی دست یافته و به بینش های جدیدی در شاخه های دیگر نظریه اعداد جبری منجر شده است. نقطه برخاست تعیین کننده، کشف ارتباط آن با توابع آرتین L بود. ما باید روی موضوعی که در مرکز این توسعه قرار داشته است، تمرکز کنیم، یعنی ساختار ماژول جهانی برای پسوندهای Galois رام فیلدهای اعداد - به عبارت دیگر پسوندهایی با ساختار ماژول محلی بی اهمیت. مشکل اساسی را می توان به صورت زمینی بیان کرد: ماهیت انسداد وجود یک پایه آزاد بر روی حلقه گروه انتگرال (\"پایه انتگرال عادی\"). در اینجا یک الگوی قطعی از یک نظریه پدیدار شده است، مشکلات اصلی حل شده است، و به وضوح به مرحله ای رسیده است که یک حساب سیستماتیک هم ممکن و هم مطلوب شده است. البته حل یک سری از مسائل منجر به سوالات جدیدی شده است و هدف ما نیز بحث در مورد برخی از آنها خواهد بود. ما امیدواریم که به خواننده کمک کنیم تا ابتدا ساختار اساسی نظریه خود و موضوع اصلی آن را درک کند و در هر مرحله متوالی انگیزه معرفی مفاهیم جدید و ابزارهای جدید را فراهم کنیم.
In this volume we present a survey of the theory of Galois module structure for rings of algebraic integers. This theory has experienced a rapid growth in the last ten to twelve years, acquiring mathematical depth and significance and leading to new insights also in other branches of algebraic number theory. The decisive take-off point was the discovery of its connection with Artin L-functions. We shall concentrate on the topic which has been at the centre of this development, namely the global module structure for tame Galois extensions of numberfields -in other words of extensions with trivial local module structure. The basic problem can be stated in down to earth terms: the nature of the obstruction to the existence of a free basis over the integral group ring ("normal integral basis"). Here a definitive pattern of a theory has emerged, central problems have been solved, and a stage has clearly been reached when a systematic account has become both possible and desirable. Of course, the solution of one set of problems has led to new questions and it will be our aim also to discuss some of these. We hope to help the reader early on to an understanding of the basic structure of our theory and of its central theme, and to motivate at each successive stage the introduction of new concepts and new tools.
Front Matter....Pages I-X
Introduction....Pages 1-2
Notation and Conventions....Pages 3-6
Survey of Results....Pages 7-52
Classgroups and Determinants....Pages 53-101
Resolvents, Galois Gauss Sums, Root Numbers, Conductors....Pages 102-147
Congruences and Logarithmic Values....Pages 148-198
Root Number Values....Pages 199-218
Relative Structure....Pages 219-248
Back Matter....Pages 249-262