دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Trevor M. Letcher (editor)
سری:
ISBN (شابک) : 0081028865, 9780081028865
ناشر: Elsevier Science Ltd
سال نشر: 2020
تعداد صفحات: 776
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Future Energy: Improved, Sustainable and Clean Options for Our Planet به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انرژی آینده: گزینه های بهبود یافته ، پایدار و پاک برای سیاره ما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
انرژی آینده: گزینه های بهبود یافته، پایدار و پاک برای سیاره ما، نسخه سوم دانشی را در اختیار دانشمندان و تصمیم گیرندگان قرار می دهد تا اهمیت نسبی و بزرگی روش های مختلف تولید انرژی را درک کنند. اتخاذ تصمیمات انرژی لازم برای توسعه پایدار و مقابله با تغییرات آب و هوایی. ویرایش سوم Future Energy به وضعیت فعلی انرژی می پردازد و سناریوهای آینده مربوط به گرم شدن کره زمین و افزایش دی اکسید کربن و سایر گازهای گلخانه ای در جو را تعمیم می دهد.
این نسخه کاملاً اصلاح شده و به روز شده شامل بیش از 40 فصل در مورد تمام جنبه های انرژی آینده است که هر فصل توسط دانشمندان و مهندسان متخصص در زمینه های مربوطه به روز شده و گسترش یافته است.
Future Energy: Improved, Sustainable and Clean Options for Our Planet, Third Edition provides scientists and decision-makers with the knowledge they need to understand the relative importance and magnitude of various energy production methods in order to make the energy decisions necessary for sustaining development and dealing with climate change. The third edition of Future Energy looks at the present energy situation and extrapolates to future scenarios related to global warming and the increase of carbon dioxide and other greenhouse gases in the atmosphere.
This thoroughly revised and updated edition contains over 40 chapters on all aspects of future energy, with each chapter updated and expanded by expert scientists and engineers in their respective fields.
Cover Future Energy: Improved, Sustainable and Clean Options for our Planet Copyright Dedication List of Contributors Preface Part 1: Introduction 1. Introduction With a Focus on Atmospheric Carbon Dioxide and Climate Change 1.1 Introduction 1.2 Why is it important to consider our future energy options? 1.2.1 Society\'s needs 1.2.2 The need for a sustainable, safe, and nonpolluting energy source 1.2.3 Climate change 1.3 Atmospheric pollution and climate change 1.4 What are our options for electricity generation? 1.5 What are our options for transport fuel? 1.6 Thermodynamics and sustainable energy 1.7 The energy situation in the world today 1.8 How can we reduce the stranglehold of fossil fuels? References Part 2: Fossil Fuels (Energy Sources) 2. Coal: Past, Present, and Future Sustainable Use 2.1 Introduction 2.1.1 Coal reserves and distribution 2.1.2 Current extraction trend and use 2.2 Coal classification and characterization 2.2.1 Coal classification 2.2.2 Coal characterization/properties 2.3 Issues with coal utilization 2.3.1 Operational issues 2.3.2 Environmental issues 2.3.2.1 Gaseous emission 2.3.2.2 Particulates and trace/toxic elements emission 2.3.2.3 Greenhouse gas emissions 2.3.2.4 Wastewater 2.3.2.5 Solid waste 2.4 Clean coal technologies 2.4.1 Pre-combustion coal upgrading 2.4.1.1 Wet beneficiation/coal washing 2.4.1.2 Dry beneficiation 2.4.1.3 Drying of lignites and sub-bituminous coal 2.4.1.4 Preparation of ultra clean coal 2.4.2 Advanced combustion/gasification technologies 2.4.2.1 Integrated gasification combined cycle 2.4.3 Post-combustion cleaning 2.4.3.1 Gaseous emission (NOx, SOx) control 2.4.3.2 Particle and trace elements emission control 2.4.4 Carbon capture and storage 2.4.4.1 Pre-combustion capture 2.4.4.2 Oxy-firing 2.4.4.3 Chemical looping combustion 2.4.4.4 Post-combustion capture 2.4.4.5 Current status of carbon capture and storage 2.4.4.5.1 Sask power, boundary dam, Canada 2.4.4.5.2 Petra nova CCS, houston, USA 2.4.4.5.3 Kemper County, Mississippi, USA 2.5 Sustainable coal use and future directions 2.5.1 Future projections 2.5.2 Technologies for sustainable coal utilization 2.6 Summary References 3. Unconventional Oil: Oilsands 3.1 Introduction 3.2 Occurrence of oilsands deposits 3.3 Physical and chemical properties of oilsands bitumen 3.4 Bitumen production from oilsands 3.4.1 Extraction of mined oilsands 3.4.2 Subsurface production of oilsands 3.5 Bitumen transport by pipeline 3.6 Bitumen upgrading and refining 3.7 Bitumen upgrader facilities 3.8 Environmental footprint of oilsands production 3.9 Future of oilsands References 4. Shale Gas, Tight Oil, Shale Oil and Hydraulic Fracturing 4.1 Introduction 4.2 Hydrocarbons in low-permeability (tight) rocks 4.3 Unconventional oil and gas 4.3.1 Potential resources 4.3.1.1 Shale gas 4.3.1.2 Tight oil 4.3.2 Extraction methods 4.3.2.1 Horizontal drilling 4.3.2.2 Hydraulic fracturing 4.3.2.3 Microseismic monitoring 4.3.2.4 Environmental concerns 4.3.2.5 Induced seismicity 4.3.3 Future production of mudstone-hosted hydrocarbons 4.3.3.1 Shale gas 4.3.3.2 Tight oil 4.4 Oil shale 4.4.1 Potential resources 4.4.2 Extraction methods 4.4.2.1 Mining and surface processing 4.4.2.2 In situ retorting 4.4.2.3 In-capsule retorting 4.4.2.4 Environmental concerns 4.4.3 Future production of shale oil 4.5 Conclusions References 5. Coalbed Methane: Reserves, Production, and Future Outlook 5.1 Introduction 5.2 Properties and origin of coalbed methane 5.3 Coalbed methane availability and production 5.4 Drilling and extraction techniques 5.5 Environmental issues of CBM extraction 5.6 Future outlook References 6. Natural Gas Hydrates: Status of Potential as an Energy Resource 6.1 Introduction 6.2 Gas hydrate occurrence types 6.3 Gas hydrate resource volumes 6.4 Gas hydrate exploration 6.5 Gas hydrate reservoir characterization 6.6 Gas hydrate geologic systems 6.7 Gas hydrate production technology 6.8 Gas hydrate production challenges 6.9 Conclusions References Part 3: Nuclear Power (Energy Sources) 7. Nuclear Fission 7.1 Introduction 7.1.1 Nuclear fuel 7.1.2 Nuclear fission 7.1.3 Controlled fission reactions 7.2 Nuclear reactor technology 7.2.1 Development of nuclear reactors 7.2.2 The past 7.2.3 The present 7.2.4 Advanced reactor technology 7.2.4.1 Very high temperature reactor 7.2.4.2 Liquid metal-cooled fast reactor 7.2.4.3 Gas-cooled fast reactor 7.2.4.4 Molten salt reactor 7.2.4.5 Supercritical water-cooled reactor 7.3 Managing irradiated fuel 7.3.1 Open and closed fuel cycles 7.3.2 Advantages and disadvantages of open and closed fuel cycles 7.3.3 Current status of fuel cycles 7.4 Thorium as an alternative fuel 7.4.1 Properties of thorium 7.4.2 Potential of thorium fuels 7.5 Practicalities of nuclear energy 7.5.1 Practicalities 7.5.2 Safety 7.5.3 Waste management 7.5.4 Siting and public acceptance 7.5.5 Fuel supply 7.5.6 Proliferation 7.6 Conclusions References 8. Small Modular Nuclear Reactors 8.1 Introduction 8.2 Economics and financing of SMRs 8.2.1 Introduction to the economic evaluation of nuclear power plants 8.2.2 Modularization 8.2.3 Co-siting economies 8.2.4 Learning and construction schedule Modularity—learning economies Mass production economies Fixed daily cost The postponing of cash inflow 8.2.5 Life-cycle costs 8.2.5.1 Capital cost 8.2.5.2 Operating expenditure 8.2.5.3 Decommissioning cost 8.2.6 Small modular reactor financing 8.3 External factors 8.3.1 Regulation Regulatory harmonization and international certification Duration and predictability of the licensing process Manufacturing license The need for a new and regulatory framework 8.3.2 Electric grid characteristics/market dimension 8.3.3 Public acceptance 8.3.4 Safety and security 8.3.5 Emergency planning zone 8.3.6 Cogeneration 8.4 Why has nobody built SMRs in the last twodecades? And the way forward References Part 4: Transport Energy (Energy Sources) 9. Biofuels for Transport 9.1 Introduction 9.2 Biofuels current and prospective status 9.3 Biofuel use in transport: possibilities and constraints 9.3.1 Biofuels for otto cycle engines 9.3.2 Biofuels for diesel cycle engines and gas turbines 9.3.3 Innovative technologies for biofuels use in transport 9.4 Biofuels production: context and advances in sugarcane bioenergy 9.4.1 Diversification and flexibility: basis for feasibility of sugarcane bioenergy 9.4.1.1 Flexibility and diversity in bioenergy production 9.4.1.2 Flexibility and diversity in bioenergy marketing 9.4.1.3 Flexibility and diversity in bioenergy use 9.5 Sustainability challenges: concepts and achievements 9.5.1 Assessing biofuels sustainability 9.6 The ethical principles of biofuels 9.7 Final remarks and conclusions References 10. Transport Fuel: Biomass-, Coal-, Gas- and Waste-to-Liquids Processes 10.1 Introduction 10.2 Overview of alternative carbon feed-to-liquid (XTL) processes 10.2.1 Overview of oil recovery by direct liquefaction 10.2.2 Overview of oil production by indirect liquefaction 10.2.3 Overview of transport fuel production by synthetic oil refining 10.3 Direct liquefaction 10.3.1 Thermochemical conversion principles 10.3.2 Oil quality 10.3.3 Refining to transport fuels 10.4 Indirect liquefaction 10.4.1 Synthesis gas from natural gas reforming 10.4.2 Synthesis gas from biomass, coal and waste gasification 10.4.3 Fischer–Tropsch synthesis 10.4.4 Refining Fischer–Tropsch synthetic oil to transport fuels 10.4.5 Methanol synthesis 10.4.6 Refining methanol to transport fuels 10.5 Environmental footprint of liquefaction 10.5.1 Upstream environmental impact 10.5.2 Downstream environmental impact 10.5.3 Environmental impact of product use 10.6 Future energy References 11. The Electric Vehicle Revolution 11.1 Introduction 11.2 Battery electric vehicles 11.3 Hybrid electric vehicles 11.4 Disruption of the automotive system 11.5 Current EV market 11.6 Urban electric vehicles 11.7 Rural electric vehicles 11.8 Disruption of the energy system 11.9 How EVs impact on the generating system 11.10 How EVs impact on the distribution system 11.11 Smart grid solutions and new business models 11.12 Conclusions References Part 5: Energy Storage 12. The Use of Batteries in Storing Electricity 12.1 Introduction 12.2 Basics of lithium-ion batteries 12.3 Development of lithium-ion battery systems 12.3.1 Design of battery modules and systems for stationary applications 12.3.1.1 Consideration of efficiencies 12.4 Battery management systems 12.5 System integration 12.5.1 System topologies 12.5.1.1 DC-coupled systems 12.5.1.2 AC-coupled systems 12.5.1.3 Generator-coupled systems 12.5.2 Energy management 12.6 Key factors affecting bankability and insurability of PV battery storage projects 12.7 Conclusions References 13. The Use of Flow Batteries in Storing Electricity for National Grids 13.1 Introduction and historic development 13.2 Characteristics of flow batteries 13.3 Cost and levelized cost of storage 13.3.1 Investment costs 13.2.2 Levelized cost of storage 13.4 Applications and markets 13.5 Current projects and latest plans 13.5.1 Smart region Pellworm, Germany 13.5.2 Solar pv plant in Qinghai, China 13.5.3 San Bernardino county community center, US 13.5.4 Minami-Hayakita substation, Hokkaido, Japan 13.6 Redox flow battery suppliers References 14. Compressed-Air Energy Storage 14.1 Introduction 14.2 CAES attributes and power grid operation 14.2.1 CAES attributes and ES technology comparison 14.2.2 Suitable grid services for CAES 14.2.3 CAES cost comparison with other ES technologies 14.3 Types of CAES system 14.3.1 Diabatic CAES 14.3.2 Adiabatic CAES 14.3.2.1 A-CAES without TES 14.3.2.2 A-CAES with TES 14.3.3 Isothermal CAES 14.3.4 Liquid air energy storage 14.3.5 Supercritical CAES 14.3.6 Micro-CAES 14.3.7 Underwater CAES 14.3.8 Underground storage caverns 14.3.8.1 Porous rock 14.3.8.2 Hard rock 14.3.8.3 Salt caverns 14.4 CAES thermodynamic and exergy analysis 14.4.1 Air compression, expansion, and assumptions 14.4.2 Assumptions 14.4.3 Energy analysis 14.4.3.1 Energy and mass balance 14.4.3.2 Air compressors 14.4.3.3 Air expanders 14.4.3.4 Heat exchangers 14.4.3.5 Air storage reservoirs 14.4.3.6 Heat storage reservoirs 14.4.4 Exergy analysis 14.4.4.1 Exergy in a flow stream 14.4.4.2 Exergy balance 14.4.4.3 Air compressors 14.4.4.4 Air expanders 14.4.4.5 Heat exchangers 14.4.4.6 Air storage tanks 14.4.4.7 Heat storage 14.4.4.8 4.4.8 liquid pumps 14.4.4.9 Throttling valves 14.4.5 Energy and exergy flow examples 14.5 Global storage capacity 14.5.1 Methodology 14.5.2 Results and discussion 14.6 Future direction and challenges 14.6.1 Roundtrip efficiency improvements 14.6.2 Turbomachinery 14.6.3 Integration with renewables and other ES technologies 14.6.4 Small-scale CAES 14.6.5 Storage cavern research 14.6.6 Economics and government policy References Part 6: Renewables (Energy Sources) 15. Hydroelectric Power 15.1 Introduction 15.2 Hydropower resources 15.2.1 Definition of potential 15.2.2 Global and regional overview 15.3 Technology 15.3.1 Run-of-river 15.3.2 Storage hydro 15.3.3 Pumped storage 15.3.4 Hydrokinetic 15.3.5 Underground power plants 15.3.6 Large and small hydro 15.4 Sustainability issues 15.4.1 Life-cycle assessment 15.4.2 Greenhouse gas emissions 15.4.3 Energy payback ratio 15.4.4 Climate change impacts 15.5 Cost issues 15.6 Integration into the broader energy system 15.7 Future deployment References 16. Wind Energy 16.1 Renewables in the context of limiting air pollution and climate change 16.2 Wind among the renewables 16.3 Offshore wind power 16.3.1 Why offshore wind? 16.3.2 Current state of offshore wind 16.3.3 Offshore wind farm 16.3.4 Wind turbines 16.3.5 Foundations of offshore wind turbines 16.4 Economics of offshore wind farms 16.5 Future direction on the use of offshore wind 16.5.1 Floating wind farm 16.5.2 Seismic resilience of nuclear power plant through the use of offshore wind turbines 16.5.2.1 Case study: performance of near shore wind farm during 2011 Tohoku earthquake 16.5.2.2 Why did the wind farm stand up? 16.5.3 Battery storage with wind 16.5.4 Hydrogen production through offshore wind References 17. Tidal Current Energy: Origins and Challenges 17.1 Introduction 17.2 Tidal current drivers 17.2.1 Astronomical drivers 17.2.2 Creation of tidal currents 17.2.3 Coriolis forces 17.2.4 Amphidromic points 17.2.5 Ocean tides 17.2.6 Meteorological forces 17.2.7 Bathymetry and topography 17.2.8 Tidal current velocity 17.2.9 Wave action 17.2.10 Turbulence and storm surges 17.2.11 Mooring loads and structural integrity 17.3 Devices 17.3.1 Marine current turbines (siemens) 17.3.2 Andritz hydro hammerfest 17.3.3 Open hydro 17.3.4 Atlantis technologies 17.3.5 Scotrenewables 17.3.6 International projects 17.3.7 Devices summary 17.4 Anchors and fixings 17.4.1 Gravity base and anchors 17.4.2 Suction/drilled/driven pile anchors 17.4.3 Sea snail (see ) 17.4.4 Anchors and fixings summary 17.5 Biofouling 17.6 Conclusions References Recommended reading 18. Photovoltaics, Including New Technologies (Thin Film) and a Discussion on Module Efficiency 18.1 Introduction 18.2 Solar energy 18.3 Photovoltaic cells and modules 18.3.1 Photovoltaic phenomena 18.3.2 Photovoltaic cells 18.3.3 Photovoltaic modules 18.3.3.1 Crystalline silicon (wafer-based) technology 18.3.3.2 Thin-film solar cell and module technology 18.3.3.3 Emerging technologies 18.3.3.4 The module parameters degradation and the service life 18.4 Photovoltaic systems 18.4.1 Stand-alone (autonomous) photovoltaic systems 18.4.1.1 Direct-coupled system 18.4.1.2 Stand-alone systems with energy accumulation 18.4.2 Photovoltaic systems connected to the grid (grid-on) 18.4.2.1 Inverters for PV on-grid systems 18.4.2.2 Balance of system 18.4.3 PV system operation, maintenance, and diagnostics 18.5 Economy issues References 19. Concentrating Solar Power 19.1 Introduction—concept and basic characteristics 19.2 State of the art 19.2.1 Parabolic trough power plants 19.2.1.1 Direct steam generation 19.2.1.2 Molten salt applications 19.2.2 Linear fresnel systems 19.2.3 Central receiver systems 19.2.4 Parabolic dish engine systems 19.3 Cost and market 19.3.1 Cost structure and actual cost figures 19.3.2 Potential impact of CSP until 2050 19.3.3 Further options References 20. Geothermal Energy 20.1 Geothermal energy resources 20.2 Exploration 20.3 Drilling and testing 20.4 Electricity production from geothermal resources 20.5 Geothermal reservoir management 20.6 Direct use applications 20.7 Geothermal energy and the environment 20.8 Geothermal energy and communities 20.9 The future of geothermal energy References Further reading 21. Energy From Biomass 21.1 Introduction of biomass 21.2 Production of conventional biofuels via bioconversions 21.2.1 Bioethanol 21.2.2 Biobutanol 21.2.3 Biodiesel 21.3 Production of advanced biofuels 21.3.1 Fast pyrolysis 21.3.2 Microwave-assisted pyrolysis 21.3.3 Hydrothermal processing 21.4 Production of third-generation biofuels from algae 21.4.1 In situ transesterification 21.4.2 Hydrothermal liquefaction 21.4.3 Anaerobic digestion 21.5 Utilization of biomass for heat and power generation 21.6 Conclusions and future perspectives Acknowledgment References Part 7: New Possible Energy Options 22. Hydrogen: An Energy Carrier 22.1 Introduction 22.2 Hydrogen 22.2.1 Properties 22.2.2 End-use applications 22.2.3 The problems 22.2.4 The potential payoff 22.2.4.1 The environment and climate change 22.2.4.2 Security and energy independence 22.3 Basic elements needed for hydrogen utilization 22.3.1 Production 22.3.1.1 Production from fossil fuels 22.3.1.2 Natural gas reforming 22.3.1.3 Coal gasification 22.3.1.4 Water splitting 22.3.1.5 Water electrolysis 22.3.1.6 High-temperature electrolysis 22.3.1.7 Photoelectrolysis (photolysis) 22.3.1.8 Solar thermochemical hydrogen (STCH) 22.3.1.9 Photobiological production (biophotolysis) 22.3.1.10 Biomass conversion 22.3.2 Distribution 22.3.2.1 Pipeline 22.3.2.2 High-pressure tube trailer 22.3.2.3 Liquefied hydrogen tankers 22.3.3 Storage 22.3.3.1 Physical based 22.3.3.1.1 Compressed gas 22.3.3.1.2 Cryogenic liquid hydrogen 22.3.3.2 Material based 22.3.3.2.1 Sorbents 22.3.3.2.2 Metal hydrides 22.3.3.2.3 Chemical hydrogen 22.3.4 Safety: regulations, codes, and standards 22.3.4.1 Material considerations 22.3.5 Education and dissemination 22.4 Current status 22.4.1 Now and the future around the world 22.4.1.1 Australia 22.4.1.2 Austria 22.4.1.3 Brazil 22.4.1.4 Canada 22.4.1.5 China 22.4.1.6 France 22.4.1.7 Germany 22.4.1.8 Iceland 22.4.1.9 India 22.4.1.10 Japan 22.4.1.11 The Netherlands 22.4.1.12 New Zealand 22.4.1.13 Norway 22.4.1.14 Portugal 22.4.1.15 Russian federation 22.4.1.16 Republic of Korea (south) 22.4.1.17 Republic of South Africa 22.4.1.18 Sweden 22.4.1.19 Turkey 22.4.1.20 United Arab Emirates 22.4.1.21 United Kingdom 22.4.1.22 United States of America References Websites 23. Fuel Cells: Energy Conversion Technology 23.1 Introduction 23.2 Technological overview 23.2.1 General information 23.2.2 Proton exchange membrane fuel cell 23.2.3 Phosphoric acid fuel cell 23.2.4 Solid oxide fuel cell 23.2.5 Other technologies 23.3 Application 23.3.1 Power technologies 23.3.2 Fuel cell vehicles 23.3.3 Others 23.3.3.1 Portable power supply 23.3.3.2 Backup power supply 23.4 Environmental impact analysis 23.4.1 Fuel cell production 23.4.2 Influence of fuel sourcing on the environment 23.5 Technoeconomic review 23.5.1 System costs and cost development 23.5.2 Operating and auxiliary costs 23.5.3 Market development 23.6 Challenges Acknowledgments References 24. Space Solar 24.1 Overview and motivation 24.2 Perspective 24.3 Selected concepts 24.3.1 Perpendicular to orbital plane architectures 24.3.2 Sandwich module architectures 24.3.3 Other space solar architectures 24.4 Key technologies 24.4.1 Transmitter efficiency 24.4.2 Rectification at the receiver 24.5 Performance metrics 24.5.1 Collect/transmit area-specific mass [kg m−2] 24.5.2 Mass-specific transmitted power [W kg−1] 24.5.3 Combined conversion efficiency 24.5.4 Additional figures of merit and qualities of interest for space segment elements 24.5.5 Additional figures of merit and qualities of interest for solar power satellite systems 24.6 Outlook Acknowledgments References 25 - Nuclear Fusion 25.1 What is nuclear fusion? 25.2 Desirable characteristics of fusion power 25.2.1 Safety and waste 25.2.2 Resources 25.2.3 Compatibility with existing infrastructure 25.3 Why fusion power is difficult 25.4 Approaches to fusion reactors 25.5 Economics of fusion energy 25.6 Status of current research and prospects for fusion energy References 26. Synthetic Fuel Development 26.1 Synthetic liquid fuel–beginnings from fossil fuels (1910–55) 26.2 Present synthetic liquid fuel processes (1955–2011) 26.3 Global energy production from fossil fuel 26.4 Synthetic fuel beginnings from non–fossil fuel resources 26.4.1 History of methanol synthesis 26.4.2 Methanol synthesis from carbon dioxide 26.5 Olefin synthesis from carbon dioxide 26.6 Carbon monoxide synthesis from carbon dioxide 26.7 Carbon capture for synthetic fuel production 26.8 The future Acknowledgments References Part 8: Environmental and Related Issues 27. Energy and the Environment 27.1 Energy forms and sources 27.2 Energy life cycles 27.3 Upstream component 27.3.1 Upstream impacts 27.3.2 Mining stressors 27.3.3 Crude oil and natural gas drilling stressors 27.3.4 Environmental justice 27.4 Fuel cycle stage 27.4.1 Fuel cycle stressors 27.4.2 Crude oil transport stressors 27.4.3 Refining-related stressors 27.5 Operation stage 27.5.1 Combustion 27.5.2 Operation 27.6 Downstream component References 28. Sustainable Energy and Energy Efficient Technologies 28.1 Introduction 28.2 The existing stock of buildings and their energy use 28.3 Energy use in buildings and attempts to reduce it 28.4 Energy efficiency in buildings 28.5 Distributed energy and its impact on demand 28.6 Future of business models in the energy transition 28.7 An overview of local supply models available through partnership with an energy supplier 28.8 Demand side response (DSR) 28.9 BEN the “Balanced Energy Network” case study 28.9.1 How it works 28.10 Local self-supply model—integration of renewable energy generation with battery storage 28.11 Integrating solar PV with electricity storage to provide peak shaving and DSR services 28.12 Change by sector 28.13 Electrification versus hydrogen 28.14 Smart-grids and multiple energy vectors 28.15 Future energy professionals 28.16 Conclusion References Further reading Part 9: The Current Situation and the Transition to the Future 29. The Life Cycle Assessment of Various Energy Technologies 29.1 Introduction 29.1.1 Goal and scope definition 29.1.2 Inventory analysis 29.1.3 Life cycle impact assessment 29.1.4 Interpretation and application 29.2 Energy 29.3 Example of LCA cases in the context of energy 29.3.1 Coal 29.3.2 Gas 29.3.3 Petroleum, diesel 29.3.4 Results from LCA studies 29.4 Discussion and interpretation of LCA based results 29.5 Other environmental impact indicators 29.6 Endpoint environmental impact indicators 29.7 LCA of renewable energy 29.8 LCA of nuclear energy 29.9 The future 29.10 Source of additional information Acknowledgments References Further reading 30. Integration of High Penetrations of Intermittent Renewable Generation in Future Electricity Networks Using Storage 30.1 The low-carbon transition of electricity networks 30.2 Managing intermittency of PV through storage 30.3 Energy storage technologies 30.3.1 Vanadium redox Flow Batteries 30.3.2 Supercapacitors 30.3.3 Lead acid batteries 30.3.4 Lithium-ion (Li-ion) 30.3.5 Sodium-sulfur battery 30.3.6 Pumped hydro energy storage 30.3.7 Compressed air energy storage (CAES) 30.3.8 Thermal energy storage (TES) 30.3.9 Nickel-based batteries 30.3.10 Flywheel 30.3.11 Hybridization of energy storage systems 30.4 Power conversion and control systems 30.4.1 Power conversion for energy storage systems 30.4.1.1 Power electronics devices for PCS 30.4.1.2 Single stage converters 30.4.1.3 Double-stage converters 30.4.1.4 Multilevel converters 30.4.1.5 Price comparison of PCS technology providers 30.4.2 Control of energy storage systems References Further reading 31. Carbon Capture and Storage 31.1 Introduction 31.2 Capture 31.2.1 Postcombustion capture 31.2.2 Precombustion capture 31.2.3 Oxyfuel combustion 31.3 Transport 31.4 Storage 31.5 Conclusion References 32. Energy Transition Toward Paris Targets in China 32.1 Background 32.2 Methodology 32.2.1 Methodology framework 32.2.2 Models 32.2.3 Scenario 32.3 Scenario setting 32.4 Scenario results 32.4.1 Energy scenario 32.4.2 Emission scenarios 32.5 Conclusion References Further reading 33. Metals and Elements Needed to Support Future Energy Systems 33.1 Introduction and background 33.2 Renewable energy technologies and their material requirements 33.2.1 Solar photovoltaic panels 33.2.2 Wind turbines 33.2.3 Energy storage batteries 33.3 Global mining and metals production 33.3.1 Brief background and key concepts 33.3.2 Reserves and resources of important metals for future energy technologies 33.3.3 Mine and smelter/refinery production 33.4 Summary and conclusions References 34. A Global Overview of Future Energy 34.1 Fundamental requirements for energy systems in 21st century 34.2 Scenarios of major international institutions 34.3 Scenarios for 100% renewable energy 34.4 Major technologies for future energy 34.5 Research gaps for a future energy system 34.6 Conclusions References Index A B C D E F G H I J K L M N O P Q R S T U V W X Z Back Cover